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Sec$on	Summary	
� Mathematical	Induction	

�  Examples,	examples,	examples,	examples!	
� Mistaken	Proofs	by	Mathematical	Induction	
� Guidelines	
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Climbing	an		
Infinite	Ladder	
Suppose	we	have	an	infinite	ladder:	
1.  We	can	reach	the	first	rung	of	the	ladder.	
2.  If	we	can	reach	a	particular	rung	of	the	ladder,	then	we	

can	reach	the	next	rung.	

	
From	(1),	we	can	reach	the	first	rung.	Then	by	
applying	(2),	we	can	reach	the	second	rung.	
Applying	(2)	again,	the	third	rung.	And	so	on.		
We	can	apply	(2)	any	number	of	times	to	reach	
any	particular	rung,	no	matter	how	high	up.	

This	example	motivates	proof	by	
mathematical	induction.	
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Principle	of	Mathema$cal	Induc$on	
					Principle	of	Mathematical	Induction:	To	prove	that	P(n)	is	true	for	all	

positive	integers	n,	we	complete	these	steps:	
�  Basis	Step:	Show	that	P(1)	is	true.	
�  Inductive	Step:	Show	that	P(k)	→	P(k	+	1)		is	true	for	all	positive	

integers	k.	
					To	complete	the	inductive	step,	assuming	the	inductive	hypothesis	

that	P(k)	holds	for	an	arbitrary	integer	k,	show	that	P(k	+	1)	must	be	
true.	

					
					Climbing	an	Infinite	Ladder	Example:	

�  BASIS	STEP:	By	(1),	we	can	reach	rung	1.	
�  INDUCTIVE	STEP:	Assume	the	inductive	hypothesis	that	we	can	reach	

rung	k.	Then	by	(2),	we	can	reach	rung	k	+	1.	
					Hence,	P(k)	→	P(k	+	1)	is	true	for	all	positive	integers	k.	We	can	reach	

every	rung	on	the	ladder.	
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Important	Points	About	Using	
Mathema$cal		Induc$on	
� Mathematical	induction	can	be	expressed		as	the	rule	of	
inference	

						
				where	the	domain	is	the	set	of	positive	integers.	
	
�  In	a	proof	by	mathematical	induction,	we	don’t	assume	
that	P(k)	is	true	for	all	positive	integers!	We	show	that	if	
we	assume	that	P(k)	is	true,	then		P(k	+	1)	must	also		be	
true.		

�  Proofs	by	mathematical	induction	don’t	always	start	at	
the	integer	1.	In	such	a	case,	the	basis	step	begins	at	a	
starting	point	b	where	b	is	an	integer.	We	will	see	
examples	of	this	soon.	

		(P(1)	 ∧ ∀k	(P(k)	→	P(k	+	1))) →  ∀n	P(n),		
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Proving	a	Summa$on	Formula	by	
Mathema$cal	Induc$on	
			Example:	Show	that	
				

Note:	Once	we	have	this	
conjecture,	mathematical	
induction	can	be	used	to	
prove	it	correct.	
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Solution:	
�  BASIS	STEP:	P(1)	is	true	since	1(1	+	1)/2	=	1.	
�  INDUCTIVE	STEP:	Assume	true	for	P(k).	

																					The	inductive	hypothesis	is	
								Under	this	assumption,				



Conjecturing	and	Proving	Correct	a	
Summa$on	Formula	
						Example:	Conjecture	and	prove	correct	a	formula	for	the	sum	
of	the	first	n	positive	odd	integers.	Then	prove	your	conjecture.	

							Solution:	We	have:		

 
1 = 1, 
 
 
 
1 + 3 = 4, 
 



 
1 + 3 + 5 = 9, 
 
 
1 + 3 + 5 + 7 = 16, 



 
1 + 3 + 5 + 7 + 9 = 25, 
1 + 3 + 5 + 7 + 9 + 11 = 36


�  We	can	conjecture	that	the	sum	of	the	first	n	positive	odd	integers	
is	n2,		

	
	

1 + 3 + 5 + ∙∙∙+ (2n  − 1) = n2 .  	
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continued	→		



Conjecturing	and	Proving	Correct	a	
Summa$on	Formula	

Conjecture:	The	sum	of	the	first	n	positive	odd	integers	is	n2,		
	
	

Proof	(via	mathematical	induction):	

Inductive Hypothesis: 1 + 3 + 5 + ∙∙∙+ (2k  − 1)  =k2  	

1 + 3 + 5 + ∙∙∙+ (2k  − 1) + (2k + 1) =[1 + 3 + 5 + ∙∙∙+ (2k  − 1)] + (2k + 1)

                                                                        =	k2 + (2k + 1)  (by the inductive hypothesis)

                                                                        = k2 + 2k + 1 

                                                                         = (k + 1) 2 	
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1 + 3 + 5 + ∙∙∙+ (2n  − 1)  =n2 .  	

�  INDUCTIVE STEP: P(k)	→	P(k	+	1)	for	every	positive	integer	k.	
															Assume	the	inductive	hypothesis	holds	and	then	show	that	P(k+1)	holds.	

�  So,	assuming	P(k),	it	follows	that:	

�  Hence,	we	have	shown	that	P(k	+	1)	follows	from	P(k).	Therefore	the	sum	of	the	first	
n	positive	odd	integers	is	n2.		

�  BASIS	STEP:	P(1)	is	true	since	12	=	1.	



Proving	Inequali$es	
		Example:	Use	mathematical	induction	to	prove	that						
n	<	2n		for	all	positive	integers	n.	

			Solution:	Let	P(n)	be	the	proposition	that	n	<	2n.		

�  BASIS	STEP:	P(1)	is	true	since	1	<	21	=	2.	
�  INDUCTIVE	STEP:	Assume	P(k)	holds,	i.e.,	k	<	2k,	for	
an	arbitrary	positive	integer	k.	

� Must	show	that	P(k	+	1)	holds.	Since	by	the	inductive	
hypothesis,	k	<	2k,	it	follows	that:	

							k	+	1	<	2k	+	1 	≤	2k		+	2k		=	2	·	2k		=	2k+1			

				Therefore	n	<	2n		holds	for	all	positive	integers	n.	
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Proving	Inequali$es	
			Example:	Use	mathematical	induction	to	prove	that																				

	 	2n	<	n!,	for	every	integer	n	≥	4.	
			Solution:	Let	P(n)	be	the	proposition	that	2n		<	n!.		

�  BASIS	STEP:	P(4)	is	true	since	24		=	16  < 4! = 24.	
�  INDUCTIVE	STEP:	Assume	P(k)	holds,	i.e.,	2k		<	k!		for	an	
arbitrary	integer	k	≥	4.	To	show	that	P(k	+	1)	holds:		

																2k+1	=	2∙2k			

																																				<	2·	k!														(by	the	inductive	hypothesis)	
																																				<	(k	+	1)k!						(because		2	<	k+1)	
																								=	(k	+	1)!	
	Therefore,	2n		<	n!		holds,	for	every	integer	n	≥	4.	

Note	that	here	the	basis	step	is	P(4),	since	P(0),	P(1),	P(2),		and	P(3)	are	all	
false.			
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Proving	Divisibility	Results	
			Example:	Use	mathematical	induction	to	prove	that	n3	− n	is	
divisible	by	3,	for	every	positive	integer	n.	

	
			Solution:	Let	P(n)	be	the	proposition	that	n3	− n	is	divisible	by	3.		

�  BASIS	STEP:	P(1)	is	true	since	13	− 1 =	0, which is divisible by 3.	
�  INDUCTIVE	STEP:	Assume	P(k)	holds,	i.e.,	k3	− k	is	divisible	by	3, 

for an arbitrary positive integer k.	To	show	that	P(k	+	1)	follows:		
																(k	+	1)3	− (k	+	1)	=	(k3	+	3k2 +	3k +	1) −	(k	+	1)		
																																															=	(k3 − k)	+	3(k2 +	k) 

    By	the	inductive	hypothesis,	the	first	term	(k3 − k)	is	divisible	by	3	

and	the	second	term	is	divisible	by	3	since	it	is	an	integer	multiplied	
by	3.	Thus,	(k	+	1)3	− (k	+	1) 	is	divisible	by	3.		

	
	Therefore,	n3	− n	is	divisible	by	3,	for	every	integer	positive	integer	n.	
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Number	of	Subsets	of	a	Finite	Set	
			Example:	Use	mathematical	induction	to	show	that	if	
S	is	a	finite	set	with	n	elements,	where	n	is	a	
nonnegative	integer,	then	S	has	2n	subsets.	

								(Chapter	6	uses	combinatorial	methods	to	prove	this	result.)	

				
Solution:	Let	P(n)	be	the	proposition	that	a	set	with	n	
elements	has	2n	subsets.	
�  BASIS	STEP:	P(0)	is	true,	because	the	empty	set	has	
only	itself	as	a	subset	and		20	=	1.	

�  INDUCTIVE	STEP:	Assume	P(k)	is	true	for	an	arbitrary	
nonnegative	integer	k.	

	 continued	→		
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Number	of	Subsets	of	a	Finite	Set	
	

	
�  Let	T	be	a	set	with	k	+	1	elements.	Then	T	=	S	∪	{a},	where	a	∈	T	and			

S	=	T	−	{a}			(and	hence	|S|	=	k).	
�  For	each	subset	X	of	S,	there	are	exactly	two	subsets	of	T,	i.e.,	X	and											

X	∪ {a}. 













�  By the inductive hypothesis S  has 2k	subsets.	Since	there	are	two	
subsets	of	T		for	each	subset	of	S,	the	number	of	subsets	of	T		is	

				2	∙2k	=	2k+1	.	

Inductive	Hypothesis:	Every	set	with	k	elements	has	2k	subsets.	
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An	Incorrect	“Proof”	by	
Mathema$cal	Induc$on	
			“Proof”:	Let	P(n)	be	the	statement	that	every	set	of	n	lines	in	the	
plane,	no	two	of	which	are	parallel,	meet	in	a	common	point.	
Here	is	a	“proof”	that	P(n)	is	true	for	all	positive	integers	n	≥ 2.  	
�  BASIS	STEP:	The	statement	P(2)	is	true	because	any	two	lines	in	

the	plane	that	are	not	parallel	meet	in	a	common	point.	
�  INDUCTIVE	STEP:	The	inductive	hypothesis	is	the	statement	that	

P(k)	is	true	for	the	positive	integer		k	≥ 2,	i.e.,	every	set	of	k	lines	in	
the	plane,	no	two	of	which	are	parallel,	meet	in	a	common	point.	

�  We	must	show	that	if	P(k)	holds,	then	P(k	+	1)	holds,	i.e.,		if	every	
set	of	k	lines	in	the	plane,	no	two	of	which	are	parallel,	k	≥ 2, meet	
in	a	common	point,	then	every	set	of	k	+	1	lines	in	the	plane,	no	
two	of	which	are	parallel,	meet	in	a	common	point.		

	
continued	→		
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An	Incorrect	“Proof”	by	
Mathema$cal	Induc$on	

	
	
�  Consider	a	set		of	k	+	1	distinct	lines	in	the	plane,	no	two	parallel.	By	the	

inductive	hypothesis,	the	first	k	of	these	lines	must	meet	in	a	common	point	
p1.	By	the	inductive	hypothesis,	the	last	k	of	these	lines	meet	in	a	common	
point	p2.		

�  If	p1		and	p2	are	different	points,	all	lines	containing	both	of	them	must	be	the	
same	line	since	two	points	determine	a	line.	This	contradicts	the	assumption	
that	the	lines	are	distinct.	Hence,	p1	=	p2			lies	on	all	k	+	1	distinct	lines,	and	
therefore	P(k	+	1)	holds.	Assuming	that		k	≥2, distinct lines meet in a common 
point, then every 		k	+	1 lines meet in a common point.


�  There must be an error in this proof  since the conclusion is absurd. But where is 
the error?

�  Answer:	P(k)→	P(k	+	1)	only	holds	for		k	≥3. It	is	not	the	case	that	P(2)	implies	P(3).	

The	first	two	lines	must	meet	in	a	common	point	p1	and	the	second	two	must	meet	in	
a	common	point	p2.	They	do	not	have	to	be	the	same	point	since	only	the	second	line	
is	common	to	both	sets	of	lines.	

	

Inductive	Hypothesis:	Every	set	of	k	lines	in	the	plane,	where				
k	≥ 2,	no	two	of	which	are	parallel,	meet	in	a	common	point.	
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																						Guidelines:	
					Mathema$cal	Induc$on	Proofs	
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� Express	the	statement	in	the	form	“for	all	n	≥	b,	P(n)”	
for	a	fixed	integer	b.	

� Write	“BASIS	STEP”	
�  Show	P(b)	is	true	

� Write	“INDUCTIVE	STEP”	
�  State	inductive	hypothesis	in	the	form	“Assume	P(k)	is	
true	for	an	arbitrary	integer	k	≥	b”	

�  State	what	needs	to	be	proven	
�  Write	out	what	P(k+1)	is	

continued	→		



																						Guidelines:	
					Mathema$cal	Induc$on	Proofs	
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� Assume	P(k),	and	prove	P(k+1)	
�  Be	sure	proof	is	valid	for	all	integers	k	≥	b,	including	
when	k	=	b.	

�  Identify	when	the	INDUCTIVE	STEP	concludes,	such	
as	by	saying	“this	completes	the	inductive	step”	

� When	finished,	state	the	conclusion.	“By	
mathematical	induction,	P(n)	is	true	for	all	integers			
n	≥	b”	


