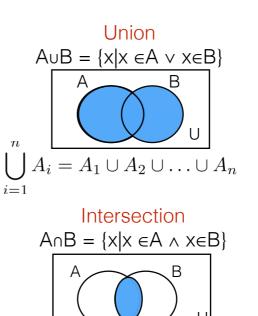
Terminology	<u>Notation</u>	Definition	Meaning
C is a <u>subset</u> of D	C⊆D	∀x(x∈C → x∈D)	Every element of C is also an element of D
C is a <u>proper</u> <u>subset</u> of D	CcD	∀x(x∈C → x∈D) ∧ ∃x(x∈D ∧ x∉C)	C⊆D but C≠D. Every element of C is also an element of D, but D has at least one element that C doesn't have
C is <u>equal</u> to D	C=D	$\forall x(x \in C \leftrightarrow x \in D)$	C and D have exactly the same elements
×			

 \mathbf{N} = natural numbers {0,1,2,...}

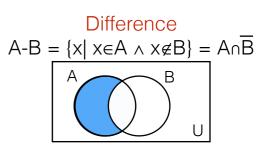
- $Z = integers \{..., -1, 0, 1, ...\}$
- Z^+ = positive integers {1,2,3,..}
- **R** = real numbers (ex: 1.5, $-\pi$, 40)
- \mathbf{R}^{+} = positive real numbers (ex: π , 4.2)
- **Q** = rational numbers
- \mathbf{U} = the universal set
- \emptyset = the empty set

Set Identities & Operations:

Law	<u>Union</u>	Intersection	
Identity	Auø=A	A∩U=A	
Domination	AuU=U	A∩Ø=Ø	
Idempotent	AuA=A	A∩A=A	
Double complement	$\overline{(\overline{A})} = A$		
Communative	ΑυΒ=ΒυΑ	A∩B=B∩A	
Associative	Au(BuC)=(AuB)uC	An(BnC)=(AnB)nC	
Distributive	Au(BnC)=(AnB)u(AnC)	A∩(B∪C)=(A∪B)∩(A∪C)	
De Morgan's	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	
Absorption	A∪(A∩B)=A	A∩(A∪B)=A	
Complement	$A \cup \overline{A} = U$	$A \cap \overline{A} = \emptyset$	



Complement $A = \{x \in U \mid x \notin A\}$ U



Three different ways to prove A=B

- 1. Prove that both $A \subseteq B$ and $B \subseteq A$.
- 2. Use set builder notation and propositional logic.
- 3. Membership tables.

Key Set Concepts:

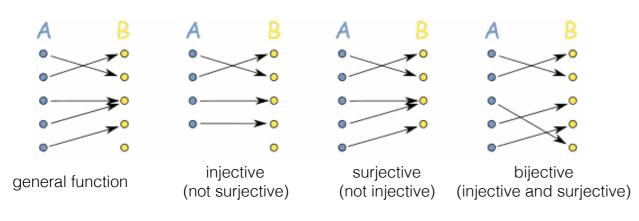
- A set is an unordered collection of objects. It can be described via:
 - roster method: list all elements
 - set builder notation: $S = \{x \mid P(x)\}$
- $x \in S$ means x is an element of S.
- x ∉ S means x is not an element of S.
- For every set S, $\emptyset \subseteq S$ and $S \subseteq S$.
- The <u>cardinality</u> of a finite set S, denoted S, is the number of distinct elements of S.
- The <u>power set</u> of S, denoted P(S), is the set of all subsets of S. If |S|=n, then $|P(S)|=2^n$.
- An <u>n-tuple</u> is an ordered collection of *n* objects, denoted as (a₁, a₂, ..., a_n)
 - two n-tuples are equal if and only if their corresponding elements are equal
- The Cartesian Product AxB is the set of all ordered pairs between elements of A and elements of B.
 - $AxB = \{(a,b) \mid a \in A \land b \land B\}$
- The Cartesian Product A1xA2x...xAn is the set of all ordered n-tuples between elements of $A_1, A_2, \dots A_n$.
 - $A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for } i=1, 2, \dots n\}$
- $\forall x \in S (P(x))$ is shorthand for $\forall x(x \in S \rightarrow P(x))$
- $\forall x \in S (P(x))$ is shorthand for $\forall x (x \in S \rightarrow P(x))$
- The truth set of some predicate P(x) for a domain D is defined as $\{x \in D \mid x \in D \mid x \in D \mid x \in D \}$ • P(x)
- The Inclusion-Exclusion principle states that |AuB|=|A|+|B|-|An

L			
A_i	$=A_1$	$\cup A_2$	Ul
A		t <mark>ersec</mark> {x x ∈	ction A ∧ xe
	A		B

 $A_i = A_1 \cap A_2 \cap \ldots \cap A_n$

Key Function Concepts:

- A function *f* from a set A to B, denoted *f*: A→B, is an an assignment of each element of A to exactly one element of B
 - A is the domain of f
 - B is the <u>codomain</u> of f
 - f(A) is the <u>range</u> of f
 - If *f*(*a*)=*b*, then *b* is the image of *a* under *f*, and *a* is the preimage of *b*.
- Two functions are <u>equal</u> when they have the same domain, same codomain, and map each element of the domain to the same element of the codomain.
- A function can be represented via:
 - explicit statement of assignments
 - a formula
 - computer program
- Let $f: B \rightarrow C$ and $g: A \rightarrow B$. The <u>composition</u> of f with g is fog: $A \rightarrow C$, where $(f \circ g)(a) = f(g(a))$.
- The floor function, denoted f(x)=LxJ, is the largest integer ≤ x.
- The <u>ceiling</u> function, denoted f(x)=⌈x⌉, is the smallest integer ≥ x.
- Given a bijective function *f:C→D*, the inverse *f⁻¹:D→C* is defined as *f⁻¹(y)=x* if and only if *f(x)=y*. No inverse exists unless *f* is bijective.
- A function $f: C \rightarrow D$ is <u>injective</u> (one-to-one) if and only if $\forall xy \in C f(x) = f(y) \rightarrow x = y$
- A function $f: C \rightarrow D$ is surjective (onto) if and only if $\forall y \in D \exists x \in C f(x) = y$. In this instance, f(C) = D.
- A function $f: C \rightarrow D$ is bijective (one-to-one correspondence) if and only if f is both injective and surjective.



Key Sequence Concepts:

- A <u>sequence</u> {a_n} is a function from the subset of integers to the set S. It provides an ordered list of elements.
- a_n is used to represent f(n), and is called the *n*th <u>term</u> of the sequence.
- A geometric progression is a sequence of the form a, ar, ar², ar³, ..., arⁿ
- An arithmetic progression is a sequence of the form a, a+d, a+2d,..., a+nd
- A string is a finite sequence of characters from a finite set (an alphabet)
 - the empty string is represented by λ
 - the length of a string is the number of characters in it
- A <u>recurrence relation</u> for a sequence {a_n} is an equation that expresses a_n in terms of one or more of previous terms of the sequence
 - It requires <u>initial conditions</u> which specify the terms that precede the first term where the recurrence relation takes effect
 - A sequence is a <u>solution</u> of a recurrence relation if its terms satisfy it
- The Fibonacci sequence f_0, f_1, f_2, \ldots is defined by
 - initial conditions: $f_0=0$ and $f_1=1$
 - recurrence relation: $f_n=f_{n-1} + f_{n-2}$
- Solve the recurrence relation which generates a sequence by finding a <u>closed formula</u> for the nth term of the sequence (doesn't rely on previous terms), using an iterative solution of either forward substitution or backwards substitution
- Sum of terms a_m , a_{m+1} , ..., a_n from the sequence $\{a_n\}$ is denoted by $\sum_{j=1}^{n} a_j$

$$\sum_{j=m}^{j}$$

