
Section	5.3	

Sec$on	Summary	
� Recursively	Defined	Functions	
� Recursively	Defined	Sets	and	Structures	
�  Structural	Induction	

	

2	

Recursively	Defined	Func$ons	
			Definition:		A	recursive	or	inductive	definition		of	a	
function	consists	of	two	steps.	
�  BASIS	STEP:	Specify	the	value	of	the	function	at	zero.	
�  RECURSIVE	STEP:	Give	a	rule	for	finding	its	value	at	an	
integer	from	its	values	at	smaller	integers.	

� A	function	f(n)		is	the	same	as	a	sequence	a0,	a1,	…	
where	f(i)	=	ai.	

3	

Recursively	Defined	Func$ons	
			Ex:		Suppose	f	is	defined	by:	
									f(0)	=	3,

									f(n	+	1)	=	2f(n)	+	3

				Find	f(1),	f(2),	f(3),	f(4)	
	
				Solution:	

�  f(1)	=	2∙f(0)	+	3 = 2∙3 + 3 = 9

�  f(2)	=	2∙f(1)	+	3 = 2∙9 + 3 = 21

�  f(3)	=	2∙f(2)	+	3 = 2∙21 + 3 = 45

�  f(4)	=	2∙f(3)	+	3 = 2∙45 + 3 = 93

4	

Recursively	Defined	Func$ons	
 Ex:		Give	a	recursive	definition	of	the	factorial	
function			f(n)=n!	

	
			Solution:	

Basis	Step:	f(0)	=	1

Recursive	Step:	f(n	+	1)	=	(n	+	1)∙	f(n)	

5	

Recursively	Defined	Func$ons	
			
			Ex:	Give	a	recursive	definition	of	
	
			Solution:	The	first	part	(basis	step)	of	the	definition	is	
				
	
																					The	second	part	(recursive	step)	is	

7	

Recursively	Defined	Sets	and	Structures	
			Recursive	definitions	of	sets	have	two	parts:	

�  The	basis	step	specifies	an	initial	collection	of	elements.	
�  The	recursive	step	gives	the	rules	for	forming	new	elements	
in	the	set	from	those	already	known	to	be	in	the	set.	

�  The	exclusion	rule	specifies	that	the	set	contains	nothing	
other	than	those	elements	specified	in	the	basis	step	and	
generated	by	applications	of	the	rules	in	the	recursive	step.		
�  We	will	always	assume	this	is	true,	even	if	not	explicitly	
mentioned.		

� We	will	later	develop	a	form	of	induction,	called	structural	
induction,	to	prove	results	about	recursively	defined	sets.		

11	

Recursively	Defined	Sets	and	Structures	
Ex:		Give	a	recursive	definition	a	set	containing	positive	
multiples	of	3.	
BASIS	STEP: 3 ∊	S.	
RECURSIVE	STEP:	If	x	∊	S	and	y	∊	S,	then	x	+	y	is	in	S.	

�  Initially	3	is	in	S,	then	3	+	3	=	6,	then	3	+	6	=	9,	then														
3	+	9	=	12,	then	3	+	12	=	15,		etc.	

Ex:		Give	a	recursive	definition	of	the	natural	numbers	N.	
BASIS	STEP: 0 ∊	N.	
RECURSIVE	STEP:	If	n	is	in	N,	then	n	+	1	is	in	N.			

�  Initially	0	is	in	S,	then	0	+	1	=	1,	then	1	+	1	=	2,	then													
2	+	1	=	3,	then	3	+	1	=	4,		etc.	

12	

Strings	
			Definition:		The	set		Σ*	of	strings	over	the	alphabet	Σ:	

BASIS	STEP: λ	∊	Σ*	(λ	is	the	empty	string)	
RECURSIVE	STEP:	If	w	is	in	Σ*	and	x	is	in	Σ,	then	wx	∈	Σ*.	
	

			Ex:		If	Σ	=	{0,1},	the	strings	in	in	Σ*	are	the	set	of	all	bit	
strings:		λ,	0,	1, 00,	01, 10, 11, etc.

	
			Ex:		If	Σ	=	{a,b},	show	that	aab	is	in	Σ*.

�  Since λ	∊	Σ*	and	a ∊	Σ,					a	∊	Σ*.	
�  Since a	∊	Σ*	and	a ∊	Σ,					aa	∊	Σ*.	
�  Since aa	∊	Σ*	and	b ∊	Σ,			aab	∊	Σ*.	

13	

String	Concatena$on	
		Definition:	Two	strings	can	be	combined	via	the	operation	
of	concatenation.	Let	Σ	be	a	set	of	symbols	and	Σ*	be	the	
set	of	strings	formed	from	the	symbols	in	Σ.	We	can	define	
the	concatenation	of	two	strings,	denoted	by	∙, recursively	
as	follows:	
BASIS	STEP: If w	∈	Σ*,	then	w ∙	λ	=	w.	
RECURSIVE	STEP:	If w1	∈	Σ*	and	w2	∈	Σ*	and	x	∈	Σ,	then							

w1 ∙	(w2 x)=	(w1 ∙	w2)x.	
	

�  Often	w1 ∙	w2		is	written	as	w1 w2.	
�  Ex:	If	w1 =	abra		and	w2 =	cadabra,	the	concatenation							
w1 w2 =	abracadabra.	

14	

Length	of	a	String	
			Ex:	Give	a	recursive	definition	of	l(w),	the	length	of	
the	string	w.	

	
			Solution:	The	length	of	a	string	can	be	recursively	
defined	by:	
BASIS	STEP: l(λ)	=	0;	
RECURSIVE	STEP:	l(wx)	=	l(w)	+	1 if	w	∊	Σ*	and	x	∊	Σ.		

15	

Balanced	Parentheses	
			Ex:	Give	a	recursive	definition	of	the	set	of	balanced	
parentheses	P.	

	
			Solution:	

BASIS	STEP:		()	∊	P	
RECURSIVE	STEP:	If	w	∊	P,	then		()	w	∊	P,		(w)	∊	P	and								
w	()		∊	P.	

�  Show	that	(()	())	is	in	P.	
� Why	is))(()	not	in	P?	

16	

Well-Formed	Formulae	in	Proposi$onal	
Logic	
			Definition:	The	set	of	well-formed	formulae	in	
propositional	logic	involving	T,	F,	propositional	
variables,	and	operators	from	the	set	{¬,∧,∨,→,↔}.	
BASIS	STEP:		T,F,	and	s,	where	s	is	a	propositional	
variable,	are	well-formed	formulae.	

RECURSIVE	STEP:	If	E	and	F	are	well	formed	formulae,	
then			(¬	E),		(E ∧ F),	(E ∨ F),	(E → F),	(E ↔ F),	are	well-
formed	formulae.	

			Ex:	((p	∨q) → (q ∧ F)) is	a	well-formed	formula.	
											pq	∧ is	not	a	well	formed	formula.	

17	

Rooted	Trees	
			Definition:	The	set	of	rooted	trees,	where	a	rooted	tree	
consists	of	a	set	of	vertices	containing	a	distinguished	
vertex	called	the	root,	and	edges	connecting	these	vertices,	
can	be	defined	recursively	by	these	steps:	
BASIS	STEP:		A	single	vertex	r	is	a	rooted	tree.	
RECURSIVE	STEP:	Suppose	that	T1,	T2,	…,Tn	are	disjoint	
rooted	trees	with	roots	r1,	r2,…,rn,	respectively.	Then	the	
graph	formed	by	starting	with	a	root	r,	which	is	not	in	any	of	
the	rooted	trees	T1,	T2,	…,Tn,	and	adding	an	edge	from	r	to	
each	of	the	vertices	r1,	r2,…,rn,	is	also	a	rooted	tree.	

				

18	

Building	Up	Rooted	Trees	

• 	Trees	are	studied	extensively	in	Chapter	11.	
• 	Next	we	look	at	a	special	type	of	tree,	the	full	binary	tree.		

19	

Full	Binary	Trees	
			Definition:	The	set	of	full	binary	trees	can	be	defined	
recursively	by	these	steps.	
BASIS	STEP:	There	is	a	full	binary	tree	consisting	of	only	
a	single	vertex	r.	

RECURSIVE	STEP:	If	T1	and	T2	are	disjoint	full	binary	
trees,	there	is	a	full	binary	tree,	denoted	by	T1·T2,	
consisting	of	a	root	r	together	with	edges	connecting	
the	root	to	each	of	the	roots	of	the	left	subtree	T1	and	
the	right	subtree	T2.		

20	

Building	Up	Full	Binary	Trees	

21	

Structural	Induc$on	
			Definition:	To	prove	a	property	of	the	elements	of	a	
recursively	defined	set,	we	use		structural	induction.		
BASIS	STEP:	Show	that	the	result	holds	for	all	elements	
specified	in	the	basis	step	of	the	recursive	definition.	

RECURSIVE	STEP:	Show	that	if	the	statement	is	true	for	
each	of	the	elements	used	to	construct	new	elements	in	
the	recursive	step	of	the	definition,	the	result	holds	for	
these	new	elements.		

� The	validity	of	structural	induction	can	be	shown	to	
follow	from	the	principle	of	mathematical	induction.		

22	

Full	Binary	Trees	
			Definition:	The	height	h(T)	of	a	full	binary	tree	T	is	
defined	recursively	as	follows:	
�  BASIS	STEP:	The	height	of	a	full	binary	tree	T	consisting	of	
only	a	root	r	is	h(T)	=	0.	

�  RECURSIVE	STEP:	If	T1	and	T2	are	full	binary	trees,	then	the	
full	binary	tree	T	=	T1·T2	has	height																																											
h(T)	=	1	+	max(h(T1),h(T2)).	

�  The	number	of	vertices		n(T)	of	a	full	binary	tree	T	satisfies	
the	following	recursive	formula:	
�  BASIS	STEP:	The	number	of	vertices	of	a	full	binary	tree	T	
consisting	of	only	a	root	r	is	n(T)	=	1.	

�  RECURSIVE	STEP:	If	T1	and	T2	are	full	binary	trees,	then	the		
full	binary	tree	T	=	T1·T2	has	the	number	of	vertices																																																																	
	 	n(T)	=	1	+	n(T1)	+	n(T2).	

23	

Structural	Induc$on	and	Binary	Trees	
		Theorem:	If	T	is	a	full	binary	tree,	then			n(T)	≤	2h(T)+1	–	1.

			Proof:	Use	structural	induction.	

�  BASIS		STEP:	The	result	holds	for	a	full	binary	tree	consisting	only	
of	a	root,	n(T)	=	1	and	h(T)	=	0.		Hence,	n(T)	=	1		≤	20+1	–	1			=	1.

�  RECURSIVE	STEP:		Assume	n(T1)	≤	2h(T1)+1	–	1	and	also																			
n(T2)	≤	2h(T2)+1 –	1	whenever	T1	and	T2 are	full	binary	trees.	

	 n(T)			=		1 +	n(T1)	+	n(T2)																						(by	recursive	formula	of	n(T))	
										≤	1	+	(2h(T1)+1	–	1)	+	(2h(T2)+1 –	1)		(by	inductive	hypothesis)	
										≤	2·max(2h(T1)+1	,2h(T2)+1)	–	1 		
										=	2∙2max(h(T1),h(T2))+1	–	1																			(max(2x	, 2y)=	2max(x,y))	
										=	2∙2h(T)		–	1																																				(by	recursive	definition	of	h(T))	
										=	2h(T)+1		–	1		

−
2
.		

24	

