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Sec$on	Summary	
� Proof	by	Cases	
� Existence	Proofs	

�  Constructive	
� Nonconstructive	

� Disproof	by	Counterexample	
� Nonexistence	Proofs	
� Uniqueness	Proofs	
� Proof	Strategies	
� Proving	Universally	Quantified	Assertions	
� Open	Problems	
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Proof	by	Cases	
� To	prove	a	conditional	statement	of	the	form:	

� Use	the	tautology	

	
� Each	of	the	implications																			is	a	case.	
� Prove	each	case.	
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Proof	by	Cases	
Ex:	Show	that	for	all	real	numbers	a,	b,	c		
																max(max(a,	b),	c)	=	max(a,	max(b,	c))	
			[taking	the	maximum	of	two	numbers	is	associative]	
	
Proof:	Let	a,	b,	and	c	be	arbitrary	real	numbers.	
Then	one	of	the	following	6	cases	must	hold.		
1.  a	≥ b ≥ c

2.  a	≥ c ≥ b

3.  b	≥ a ≥c

4.  b	≥ c ≥a

5.  c	≥ a ≥ b

6.  c	≥ b ≥ a


Continued	on	next	slide	à	
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Proof	by	Cases	
Case	1:	a	≥ b ≥ c	
		max(a,	b)	=	a									max(a,	c)	=	a								max(b,	c)		=	b	
Hence		max(max(a,	b),	c)	=	a	=	max(a,	max(b,	c))	
Therefore	the	equality	holds	for	the	first	case.	
	
Case	2:	a	≥ c ≥ b	

	…	
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A	complete	proof	requires	that	the	equality	be	
shown	to	hold	for	all	6	cases.	But	the	proofs	of	
the	remaining	cases	are	similar.	Try	them.	
	



Without	Loss	of	Generality	
Ex:	Show	that	if	x	and	y	are	integers	and	both	x∙y	and	x+y	are	
even,	then	both	x	and	y	are	even.	

Proof:	Use	a	proof	by	contraposition.	Suppose		x	and	y	are	
not	both	even.	Then,	one	or	both	are	odd.	Without	loss	of	
generality,	assume	that	x	is	odd.	Then		x = 2m + 1 for	
some	integer	k.		
	Case	1:	y	is	even.	Then	y = 2n for	some	integer	n,	so																																																						
x + y = (2m	+ 1) + 2n = 2(m + n) + 1 is odd.


		Case	2:	y	is	odd.	Then	y = 2n + 1 for	some	integer	n,	so																																												
x ∙ y = (2m	+ 1) (2n + 1) = 2(2m ∙	n +m + n) + 1 is odd.






.
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We only cover the case where x is odd because the case 
where y is odd is  similar. The use phrase without  loss of 
generality (WLOG) indicates this.	



Existence	Proofs	
�  Proof	of	theorems	of	the	form																			.	
�  Constructive	existence	proof:		

�  Find	an	explicit	value	of	c,	for	which		P(c)	is	true.	
�  Then																			is			true	by	Existential	Generalization	(EG).	

	
Ex:	Show	that	there	is	a	positive	integer	that	can	be	written	
as	the	sum	of	cubes	of	positive	integers	in	two	different	
ways:	

Proof:								1729 is such a number since 

                      1729 = 103  + 93  = 123  + 13


				 Godfrey	Harold	Hardy	
		(1877-1947)	

Srinivasa	Ramanujan	
		(1887-1920)	
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Nonconstruc$ve	Existence	Proofs	
�  In	a	nonconstructive	existence	proof,	we	assume	no	c	
exists	which	makes	P(c)	true	and	derive		a	
contradiction.	

			Ex:	Show	that	there	exist	irrational	numbers	x	and	y	
such	that	xy	is	rational.	

			Proof:	We	know	that	√2 is irrational. Consider the 
number √2 √2 . If it is rational, we have two irrational 
numbers x and y with xy		rational,	namely	x	=	√2       
and y = √2.	But	if	√2 √2   is irrational,                              
then we can let  x = √2 √2  and y = √2 so that                                                             
aaaaa  xy			= (√2 √2  )√2  = √2 (√2 √2)  = √2 2  = 2.
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Counterexamples	
� Recall																																					.			
� To	establish	that																		is	true	(or																is	false)	
find	a	c	such	that	¬P(c)	is	true	or	P(c)	is	false.		

�  In	this	case	c	is	called	a	counterexample	to	the	
assertion														.	

			Ex:	“Every	positive	integer	is	the	sum	of	the	squares	of	
3	integers.”	The	integer	7	is	a	counterexample.		So	the	
claim	is	false.	
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Uniqueness	Proofs	
�  Some	theorems	assert	the	existence	of	a	unique	element	with	a	
particular	property,	∃!x	P(x).	The	two	parts	of	a	uniqueness	
proof	are		
�  Existence:	We	show	that	an	element	x	with	the	property	exists.	
�  Uniqueness:	We	show	that	if	y≠x, then y does not have the 

property.

    Ex: Show that if a and b are real numbers and  a ≠0, then there is 

a unique real number  r  such that  ar + b = 0.

    Solution:


�  Existence: The real number r = −b/a is a solution of ar + b = 0 
because a(−b/a) + b = −b + b =0.


�  Uniqueness: Suppose that s is a real number such that   as + b = 0. 
Then ar + b = as + b, where r = −b/a.  Subtracting b from both 
sides and dividing by a shows that r = s.  	

10	



Proof	Strategies	for	proving	p	→ q 	
�  Choose a method.


1.  First try a direct method of proof.  

2.  If this does not work, try an indirect method (e.g., try to 

prove the contrapositive).

�  For whichever method you are trying, choose a strategy.


1.  First	try	forward	reasoning.		Start	with	the	axioms	and	
known	theorems	and	construct	a	sequence	of	steps	that	
end	in	the	conclusion.		Start	with	p	and	prove	q,	or	start	
with	¬q	and	prove	¬p.	

2.  If	this	doesn’t	work,	try	backward	reasoning.	When	trying	
to	prove	q,		find	a	statement	p	that	we	can	prove	with	the		
property	p	→ q.	
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Backward	Reasoning		
Ex:	Suppose	that	two	people	play	a	game	taking	turns	removing	1,	2,	or	3 stones	at	a	

time	from	a	pile	that	begins	with	15	stones.	The	person	who	removes	the	last	
stone	wins	the	game.	Show	that	the	first	player	can	win	the	game	no	matter	what	
the	second	player	does.	

Proof:	Let	n	be	the	last	step	of	the	game.	
�  Step	n:				Player1	can	win	if	the	pile	contains	1,2,	or	3	stones.		
�  Step	n-1:	Player2	will	have	to	leave	such	a	pile	if	the	pile	that	he/she	is	faced	with	

has	4	stones.		
�  Step	n-2:	Player1		can	leave	4	stones	when	there	are	5,6,	or	7	stones	left	at	the	

beginning	of	his/her	turn.		
�  Step	n-3:	Player2		must	leave		such	a	pile,	if	there	are		8	stones	.		
�  Step	n-4:	Player1 has	to	have	a	pile	with	9,10,	or	11	stones	to	ensure	that	there	

are	8	left.		
�  Step	n-5:	Player2		needs	to	be	faced	with	12	stones	to	be	forced	to	leave	9,10,	or	

11.		
�  Step	n-6:	Player1  can	leave		12	stones	by	removing	3	stones.		
Now	reasoning	forward,	the	first	player	can	ensure	a	win	by	removing	3	stones	and	

leaving	12.	 12	



Universally	Quan$fied	Asser$ons	
� To	prove	theorems	of	the	form														,	assume	x	is	an	
arbitrary	member	of	the	domain	and	show	that	P(x)	
must	be	true.	Using	UG	it	follows	that														.	

	Ex:	An	integer	x	is	even	if	and	only	if	x2	is	even.		
		Solution:	The	quantified	assertion	is		
								∀x	[x	is	even	↔	x2		is	even]	
				We	assume	x	is	arbitrary.	
				Recall	that																		is	equivalent	to	
				So,	we	have		two	cases	to	consider.	These	are	
considered	in	turn.	

	 Continued	on	next	slide	à	
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	Universally	Quan$fied	Asser$ons	
			Case	1.	We	show	that	if	x	is	even	then	x2		is	even	using	
a	direct	proof	(the	only	if	part	or	necessity).	

			If	x	is	even	then	x	=	2k	for	some	integer	k.	
			Hence	x2	=		4k2	=	2(2k2	)	which	is	even	since	it	is	an	
integer	divisible	by	2.	

		This	completes	the	proof	of	case	1.	

Case	2	on	next	slide	à	
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Universally	Quan$fied	Asser$ons	
			Case	2.	We	show	that	if	x2   is	even	then	x		must	be		even	(the	if	
part	or	sufficiency).	We	use	a	proof	by	contraposition.	

			Assume	x	is		not	even		and	then	show	that	x2		is	not	even.		
			If	x	is	not	even	then	it	must	be	odd.	So,	x = 2k + 1 for	some	
integer	k.	Then		x2 =   (2k + 1)2 


                                         = 4k2 + 4k + 1 

                                         =  2(2k2 + 2k) + 1,  which	is	odd	and	hence	
not	even.	This	completes	the	proof	of	case	2.	

			Since	x	was	arbitrary,	the	result	follows	by	UG.	
	
			Therefore	we	have	shown	that	x	is	even	if	and	only	if		x2	is	even.		
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Proof	and	Disproof:	Tilings	
Ex	1:	Can	we	tile	the	standard	checkerboard	using	
dominos?	

Solution:	Yes!	One	example	provides	a	constructive	
existence	proof.	

The	Standard	Checkerboard	

Two	Dominoes	

One	Possible	Solution	
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Proof	and	Disproof:	Tilings	
Ex	2:	Can	we	tile	a	checkerboard	obtained	by	removing	
one	of	the	four	corner	squares	of	a	standard	
checkerboard?	

Solution:		
� Our	checkerboard	has	64 − 1	=	63	squares.		
�  Since	each	domino	has	two	squares,	a	board	with	a	
tiling	must	have	an	even	number	of	squares.	

� The	number		63	is	not	even.		
� We	have	a	contradiction.	
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Proof	and	Disproof:	Tilings	
	Ex	3:	Can	we	tile	a	board	obtained	by	removing	both	
the	upper	left	and	the	lower	right	squares	of	a	
standard	checkerboard?		

Nonstandard	Checkerboard	 Dominoes	

Continued	on	next	slide	à	 18	



Tilings	
		Solution:		
� There	are	62	squares	in	this	board.		
� To	tile	it	we	need	31 dominos.		
� Key	fact:	Each	domino	covers	one	black	and	one	white	
square.		

� Therefore	the	tiling	covers	31	black	squares	and	31	
white	squares.	

� Our	board	has	either	30	black	squares	and	32	white	
squares	or	32	black	squares	and	30	white	squares.			

� Contradiction!	
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The	Role	of	Open	Problems	
� Unsolved	problems	have	motivated	much	work	in	
mathematics.	Fermat’s	Last	Theorem	was	conjectured	
more	than	300	years	ago.	It	has	only	recently	been	
finally	solved.	

	
Fermat’s	Last	Theorem:	The	equation	xn		+	yn 		=	zn


     has	no	solutions	in	integers	x,	y,	and	z,	with	xyz≠0 
whenever n is an integer with n > 2.




   A proof was found by Andrew Wiles in the 1990s. 	
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An	Open	Problem	
The	3x	+	1	Conjecture:	Let	T	be	the	transformation	that	sends	an	
even	integer	x	to	x/2 and	an	odd	integer	x	to	3x	+	1.	For	all	
positive	integers	x,	when	we	repeatedly	apply	the	transformation	
T,	we	will	eventually	reach	the	integer	1.		
	
For	example,	starting	with	x	=	13:	
	










The conjecture has been vericied using computers up to 5.6∙1013  .	
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T(13)	=	3∙13 + 1 = 40

T(40)	=	40/2  = 20

T(20)	=	20/2  = 10

T(10)	=	10/2  = 5


T(5)	=	3∙5 + 1 = 16

T(16)	=	16/2  = 8 

T(8)	=	8/2  = 4

T(4)	=	4/2  = 2

T(2)	=	2/2  = 1
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Addi$onal	Proof	Methods	
Later	we	will	see	many	other	proof	methods:	
� Mathematical	induction,	which	is	a	useful	method	for	
proving	statements	of	the	form	∀n	P(n),	where	the	
domain	consists	of	all	positive	integers.	

�  Structural	induction,	which	can	be	used	to	prove	such	
results	about	recursively	defined	sets.	

� Combinatorial	proofs	use	counting	arguments.		
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