
Directed Graphs (Digraphs)

JFK

BOS

MIA

ORD

LAX
DFW

SFO

Digraphs 2

Outline and Reading

Reachability (6.4.1)
• Directed DFS
• Strong connectivity

Transitive closure (6.4.2)
• The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAGs) (6.4.4)
• Topological Sorting

Digraphs 3

Digraphs
A digraph (short for “directed graph”) is a graph whose edges are all directed
• Ex: Edge (a,b) goes from a to b, but not b to a.

A

C

E

B

D

Applications include one-way streets, flights, and
task scheduling.

Properties:
• If G is simple, m ≤ n(n-1).
• If we keep in-edges and out-edges in separate

adjacency lists, we can perform listing of the
sets of in-edges and out-edges in time
proportional to their size.

Digraph Application
Scheduling: edge (a,b) means task a must be completed before b can be started.

Computer
Architecture

Algorithms

CSII Calc IIDiscrete
Structures

CSIBCSIA Calc I

OS

CSIII

Digraphs 4

Digraphs 5

Directed DFS
• We can specialize the traversal

algorithms (DFS and BFS) to digraphs
by traversing edges only along their
direction

• In the directed DFS algorithm, we have
four types of edges
– discovery edges
– back edges
– forward edges
– cross edges

• A directed DFS starting at a vertex s
determines the vertices reachable from s

A

B

D

C

E

Digraphs 6

Reachability
DFS tree rooted at v: vertices reachable from v via directed paths

Applications:
• Dead code detection/elimination
• Garbage collection

A

C

E

B

D

F

A

C

E D

A

C

E

B

D

F

Reachable
from C

Reachable
from B

Digraphs 7

Strong Connectivity
Each vertex can reach all other vertices
• How can we test if G is strongly connected?

a

d

c

b

e

f

g

Digraphs 8

Determine if G is strongly connected
• Pick a vertex v in G
• Perform a DFS from v in G

– If there’s a w not visited, print “no”
• Let G’ be G with edges reversed
• Perform a DFS from v in G’

– If there’s a w not visited, print “no”
– Else, print “yes”

Running time: O(n+m).

Strong Connectivity
Algorithm

G:

G’:

a

d

c

b

e

f

g

a

d

c

b

e

f

g

Digraphs 9

A strongly connected component is a maximal subgraph such that each
vertex can reach all other vertices in the subgraph

• Can also be done in O(n+m) time using DFS, but is more complicated
(similar to biconnectivity).

Strongly Connected
Components

{ a , c , g }

{ f , d , e , b }

a

d

c

b

e

f

g

Digraphs 10

Transitive Closure
Given a digraph G, the transitive
closure of G is the digraph G* such that
• G* has the same vertices as G
• if G has a directed path from u to v

(u ¹ v), G* has a directed edge from
u to v

The transitive closure provides
reachability information about a
digraph.

B

A

D

C

E

B

A

D

C

E

G

G*

Computing the Transitive Closure
• One idea: perform DFS starting at each vertex

– This is O(n(n+m)) time
– Recall that m is O(n2)

• Second idea: use dynamic programming
– Observe that if there’s a way to get from A to B and from B to C,

then there’s a way to get from A to C.
– This becomes part of our subproblem characterization
– This is known as Floyd-Warshall’s algorithm, which runs in

O(n3) time using an adjacency matrix

Digraphs 11

Digraphs 12

Floyd-Warshall Transitive Closure
• Number the vertices 1, 2, …, n.
• Consider paths that use only vertices numbered 1, 2, …, k, as

intermediate vertices:

k

j

i

Uses only vertices numbered 1, …, k
(add this edge if it’s not already in)

Uses only vertices
numbered 1,…, k-1

Uses only vertices
numbered 1,…, k-1

Digraphs 13

Floyd-Warshall’s Algorithm
• Numbers the vertices of G as v1 ,

…, vn and computes a series of
digraphs G0, …, Gn

– G0=G
– Gk has a directed edge (vi, vj)

if G has a directed path from
vi to vj with intermediate
vertices in the set {v1 , …, vk}

• We have that Gn = G*
• In phase k, digraph Gk is

computed from Gk - 1

• Running time: O(n3), assuming
areAdjacent is O(1) (e.g.,
adjacency matrix)

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
i ¬ 1
for all v Î G.vertices()

denote v as vi
i ¬ i + 1

G0 ¬ G
for k ¬ 1 to n do

Gk ¬ Gk - 1
for i ¬ 1 to n (i ¹ k) do

for j ¬ 1 to n (j ¹ i, k) do
if Gk - 1.areAdjacent(vi, vk) Ù

Gk - 1.areAdjacent(vk, vj)
if ¬Gk.areAdjacent(vi, vj)

Gk.insertDirectedEdge(vi, vj , k)
return Gn

Digraphs 14

Floyd-Warshall Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v 2

v
1

v 3

v 4

v 5

v 6

v7

Digraphs 15

Floyd-Warshall, Iteration 1

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v 2

v
1

v 3

v 4

v 5

v 6

v7

Digraphs 16

Floyd-Warshall, Iteration 2

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v 2

v
1

v 3

v 4

v 5

v 6

v7

Digraphs 17

Floyd-Warshall, Iteration 3

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v 2

v
1

v 3

v 4

v 5

v 6

v7

Digraphs 18

Floyd-Warshall, Iteration 4

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v 2

v
1

v 3

v 4

v 5

v 6

v7

Digraphs 19

Floyd-Warshall, Iteration 5

JFK

MIA

ORD

LAX
DFW

SFO

v 2

v
1

v 3

v 4

v 5

v 6

v7
BOS

Digraphs 20

Floyd-Warshall, Iteration 6

JFK

MIA

ORD

LAX
DFW

SFO

v 2

v
1

v 3

v 4

v 5

v 6

v7
BOS

Digraphs 21

Floyd-Warshall, Conclusion

JFK

MIA

ORD

LAX
DFW

SFO

v 2

v
1

v 3

v 4

v 5

v 6

v7
BOS

Digraphs 22

DAGs and Topological Ordering
• A directed acyclic graph (DAG) is a

digraph that has no directed cycles
• A topological ordering of a digraph is a

numbering v1 , …, vn of the vertices such
that for every edge (vi , vj), we have i < j

• Ex: in a task scheduling digraph, a
topological order is a task sequence that
satisfies the precedence constraints

Theorem
A digraph admits a topological ordering if
and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological
ordering of G

v1

v2

v3

v4 v5

xkcd #754

Digraphs 23

write program

play

Topological Sorting
Number vertices, so that (u,v) in E implies u < v

wake up

eat

nap

study computer sci.

more CS

work out

sleep

dream about graphs

A typical student day1

2 3

4 5

6

7

8

9

10
11

make cookies
for professors

Digraphs 24

• Note: This algorithm is different than the one in Goodrich-Tamassia

• Running time: O(n + m). How…?

Algorithm for Topological Sorting

Method TopologicalSort(G)
H ¬ G // Temporary copy of G
n ¬ G.numVertices()
while H is not empty do

Let v be a vertex with no outgoing edges
Label v ¬ n
n ¬ n - 1
Remove v from H

Digraphs 25

Topological Sorting
Algorithm using DFS

Simulate the algorithm by using DFS

• O(n+m) time.

Algorithm topologicalDFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the vertices of G

in the connected component of v
setLabel(v, VISITED)
for all e Î G.outgoingIncidentEdges(v)

if getLabel(e) = UNEXPLORED
w ¬ opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
topologicalDFS(G, w)

else
{e is a forward or cross edge}

Label v with topological number n
n ¬ n - 1

Algorithm topologicalDFS(G)
Input dag G
Output topological ordering of G

n ¬ G.numVertices()
for all u Î G.vertices()

setLabel(u, UNEXPLORED)
for all e Î G.edges()

setLabel(e, UNEXPLORED)
for all v Î G.vertices()

if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)

Digraphs 26

Topological Sorting Example

Digraphs 27

Topological Sorting Example

9

Digraphs 28

Topological Sorting Example

8

9

Digraphs 29

Topological Sorting Example

7

8

9

Digraphs 30

Topological Sorting Example

7

8

6

9

Digraphs 31

Topological Sorting Example

7

8

56

9

Digraphs 32

Topological Sorting Example

7

4

8

56

9

Digraphs 33

Topological Sorting Example

7

4

8

56

3

9

Digraphs 34

Topological Sorting Example
2

7

4

8

56

3

9

Digraphs 35

Topological Sorting Example
2

7

4

8

56

1

3

9

