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Outline and Reading

Reachability (6.4.1)
• Directed DFS
• Strong connectivity

Transitive closure (6.4.2)
• The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAGs) (6.4.4)
• Topological Sorting
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Digraphs
A digraph (short for “directed graph”) is a graph whose edges are all directed
• Ex: Edge (a,b) goes from a to b, but not b to a.
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Applications include one-way streets, flights, and 
task scheduling.

Properties:
• If G is simple, m ≤  n(n-1).
• If we keep in-edges and out-edges in separate 

adjacency lists, we can perform listing of the 
sets of in-edges and out-edges in time 
proportional to their size.



Digraph Application
Scheduling: edge (a,b) means task a must be completed before b can be started.
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Directed DFS
• We can specialize the traversal 

algorithms (DFS and BFS) to digraphs 
by traversing edges only along their 
direction

• In the directed DFS algorithm, we have 
four types of edges
– discovery edges
– back edges
– forward edges
– cross edges

• A directed DFS starting at a vertex s
determines the vertices reachable from s
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Reachability
DFS tree rooted at v:  vertices reachable from v via directed paths

Applications:
• Dead code detection/elimination
• Garbage collection
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Strong Connectivity
Each vertex can reach all other vertices
• How can we test if G is strongly connected?
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Determine if G is strongly connected
• Pick a vertex v in G
• Perform a DFS from v in G

– If there’s a w not visited, print “no”
• Let G’ be G with edges reversed
• Perform a DFS from v in G’

– If there’s a w not visited, print “no”
– Else, print “yes”

Running time: O(n+m).

Strong Connectivity 
Algorithm

G:

G’:
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A strongly connected component is a maximal subgraph such that each 
vertex can reach all other vertices in the subgraph

• Can also be done in O(n+m) time using DFS, but is more complicated 
(similar to biconnectivity).

Strongly Connected 
Components

{ a , c , g }

{ f , d , e , b }
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Transitive Closure
Given a digraph G, the transitive 
closure of G is the digraph G* such that
• G* has the same vertices as G
• if G has a directed path from u to v 

(u ¹ v), G* has a directed edge from 
u to v

The transitive closure provides 
reachability information about a 
digraph.
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Computing the Transitive Closure
• One idea: perform DFS starting at each vertex

– This is O(n(n+m)) time
– Recall that m is O(n2)

• Second idea: use dynamic programming
– Observe that if there’s a way to get from A to B and from B to C, 

then there’s a way to get from A to C.
– This becomes part of our subproblem characterization
– This is known as Floyd-Warshall’s algorithm, which runs in 

O(n3) time using an adjacency matrix
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Floyd-Warshall Transitive Closure
• Number the vertices 1, 2, …, n.
• Consider paths that use only vertices numbered 1, 2, …, k, as 

intermediate vertices:

k

j

i

Uses only vertices numbered 1, …, k
(add this edge if it’s not already in)

Uses only vertices
numbered 1,…, k-1

Uses only vertices
numbered 1,…, k-1
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Floyd-Warshall’s Algorithm
• Numbers the vertices of G as v1 , 

…, vn and computes a series of 
digraphs G0, …, Gn

– G0=G
– Gk has a directed edge (vi, vj) 

if G has a directed path from 
vi to vj with intermediate 
vertices in the set {v1 , …, vk}

• We have that Gn = G*
• In phase k, digraph Gk is 

computed from Gk - 1

• Running time: O(n3), assuming 
areAdjacent is O(1) (e.g., 
adjacency matrix)

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
i ¬ 1
for all v Î G.vertices()

denote v as vi
i ¬ i + 1

G0 ¬ G
for k ¬ 1 to n do

Gk ¬ Gk - 1
for i ¬ 1 to n (i ¹ k) do

for j ¬ 1 to n (j ¹ i, k) do
if Gk - 1.areAdjacent(vi, vk) Ù

Gk - 1.areAdjacent(vk, vj)
if ¬Gk.areAdjacent(vi, vj)

Gk.insertDirectedEdge(vi, vj , k)
return Gn



Digraphs 14

Floyd-Warshall Example
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Floyd-Warshall, Iteration 1
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Floyd-Warshall, Iteration 2
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Floyd-Warshall, Iteration 3
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Floyd-Warshall, Iteration 4
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Floyd-Warshall, Iteration 5
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Floyd-Warshall, Iteration 6
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Floyd-Warshall, Conclusion
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DAGs and Topological Ordering
• A directed acyclic graph (DAG) is a 

digraph that has no directed cycles
• A topological ordering of a digraph is a 

numbering v1 , …, vn of the vertices such 
that for every edge (vi , vj), we have i < j

• Ex: in a task scheduling digraph, a 
topological order is a task sequence that 
satisfies the precedence constraints

Theorem
A digraph admits a topological ordering if 
and only if it is a DAG
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write  program

play

Topological Sorting
Number vertices, so that (u,v) in E implies u < v

wake up
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nap

study computer sci.

more CS

work out

sleep

dream about graphs

A typical student day1
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• Note: This algorithm is different than the one in Goodrich-Tamassia

• Running time: O(n + m).  How…?

Algorithm for Topological Sorting

Method TopologicalSort(G)
H ¬ G // Temporary copy of G
n ¬ G.numVertices()
while H is not empty do

Let v be a vertex with no outgoing edges
Label v ¬ n
n ¬ n - 1
Remove v from H
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Topological Sorting 
Algorithm using DFS

Simulate the algorithm by using DFS

• O(n+m) time.

Algorithm topologicalDFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the vertices of G

in the connected component of v
setLabel(v, VISITED)
for all e Î G.outgoingIncidentEdges(v)

if getLabel(e) = UNEXPLORED
w ¬ opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
topologicalDFS(G, w)

else
{e is a forward or cross edge}

Label v with topological number n
n ¬ n - 1

Algorithm topologicalDFS(G)
Input dag G
Output topological ordering of G

n ¬ G.numVertices()
for all u Î G.vertices()

setLabel(u, UNEXPLORED)
for all e Î G.edges()

setLabel(e, UNEXPLORED)
for all v Î G.vertices()

if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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