
Breadth-First Search

CB

A

E

D

L0

L1

F
L2

Breadth-First Search 2

Outline and Reading
Breadth-first search (6.3.3)
• Algorithm
• Example
• Properties
• Analysis
• Applications

DFS vs. BFS (6.3.3)
• Comparison of applications
• Comparison of edge labels

Breadth-First Search 3

Breadth-First Search
• Breadth-first search (BFS) is a general technique for traversing a

graph. A BFS traversal of a graph G
– visits all the vertices and edges of G
– determines whether G is connected
– computes the connected components of G
– computes a spanning forest of G

• BFS on a graph with n vertices and m edges takes O(n + m) time

• BFS can be further extended to solve other graph problems
– find and report a path with the minimum number of edges between

two given vertices
– find a simple cycle, if there is one

4

BFS Algorithm
The algorithm uses a mechanism for setting and getting “labels” of vertices and edges.

Algorithm BFS(G, s)
L0 ¬ new empty sequence
L0.insertLast(s)
setLabel(s, VISITED)
i ¬ 0
while ¬Li.isEmpty()

Li +1 ¬ new empty sequence
for all v Î Li.elements()

for all e Î G.incidentEdges(v)
if getLabel(e) = UNEXPLORED

w ¬ opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li +1.insertLast(w)

else
setLabel(e, CROSS)

i ¬ i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges

and partition of the
vertices of G

for all u Î G.vertices()
setLabel(u, UNEXPLORED)

for all e Î G.edges()
setLabel(e, UNEXPLORED)

for all v Î G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)

Breadth-First Search 5

Example

CB

A

E

D

discovery edge

cross edge

A visited vertex

A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

Breadth-First Search 6

Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

Breadth-First Search 7

Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

Breadth-First Search 8

Properties
Notation

Gs: connected component of s

Property 1
BFS(G, s) visits all the vertices and edges
of Gs

Property 2
The discovery edges labeled by BFS(G, s)
form a spanning tree Ts of Gs

Property 3
For each vertex v in Li
– The path of Ts from s to v has i edges
– Every path from s to v in Gs has at least

i edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

Breadth-First Search 9

Analysis
• Setting/getting a vertex/edge label takes O(1) time
• Each vertex is labeled twice

– once as UNEXPLORED
– once as VISITED

• Each edge is labeled twice
– once as UNEXPLORED
– once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence Li
• Method incidentEdges is called once for each vertex
• BFS runs in O(n + m) time provided the graph is represented by the

adjacency list structure
– Recall that Sv deg(v) = 2m

Breadth-First Search 10

Applications

Using the template method pattern, we can specialize the BFS traversal
of a graph G to solve the following problems in O(n + m) time:
• Compute the connected components of G
• Compute a spanning forest of G
• Find a simple cycle in G, or report that G is a forest
• Given two vertices of G, find a path in G between them with the

minimum number of edges, or report that no such path exists

Breadth-First Search 11

DFS vs. BFS

Back edge (v,w)
• w is an ancestor of v in the tree

of discovery edges

Cross edge (v,w)
• w is in the same level as v or in the

next level in the tree of discovery
edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Breadth-First Search 12

DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS
Spanning forest, connected
components, paths, cycles Ö Ö

Shortest paths Ö

Biconnected components Ö

