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Outline and Reading
Breadth-first search (6.3.3)
• Algorithm
• Example
• Properties
• Analysis
• Applications

DFS vs. BFS  (6.3.3)
• Comparison of applications
• Comparison of edge labels
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Breadth-First Search
• Breadth-first search (BFS) is a general technique for traversing a 

graph. A BFS traversal of a graph G
– visits all the vertices and edges of G
– determines whether G is connected
– computes the connected components of G
– computes a spanning forest of G

• BFS on a graph with n vertices and m edges takes O(n + m) time

• BFS can be further extended to solve other graph problems
– find and report a path with the minimum number of edges between 

two given vertices 
– find a simple cycle, if there is one
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BFS Algorithm
The algorithm uses a mechanism for setting and getting “labels” of vertices and edges.

Algorithm BFS(G, s)
L0 ¬ new empty sequence
L0.insertLast(s)
setLabel(s, VISITED)
i ¬ 0
while ¬Li.isEmpty()

Li +1 ¬ new empty sequence
for all v Î Li.elements() 

for all e Î G.incidentEdges(v)
if getLabel(e) = UNEXPLORED

w ¬ opposite(v,e)
if  getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li +1.insertLast(w)

else
setLabel(e, CROSS)

i ¬ i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges 

and partition of the 
vertices  of G 

for all u Î G.vertices()
setLabel(u, UNEXPLORED)

for all e Î G.edges()
setLabel(e, UNEXPLORED)

for all v Î G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)
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Example
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Example (cont.)
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Example (cont.)
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Properties
Notation

Gs: connected component of s

Property 1
BFS(G, s) visits all the vertices and edges 
of Gs

Property 2
The discovery edges labeled by BFS(G, s) 
form a spanning tree Ts of Gs

Property 3
For each vertex v in Li
– The path of  Ts from s to v has i edges 
– Every path from s to v in Gs has at least 

i edges
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Analysis
• Setting/getting a vertex/edge label takes O(1) time
• Each vertex is labeled twice 

– once as UNEXPLORED
– once as VISITED

• Each edge is labeled twice
– once as UNEXPLORED
– once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence Li
• Method incidentEdges is called once for each vertex
• BFS runs in O(n + m) time provided the graph is represented by the 

adjacency list structure
– Recall that Sv deg(v) = 2m
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Applications

Using the template method pattern, we can specialize the BFS traversal 
of a graph G to solve the following problems in O(n + m) time:
• Compute the connected components of G
• Compute a spanning forest of G
• Find a simple cycle in G, or report that G is a forest
• Given two vertices of G, find a path in G between them with the 

minimum number of edges, or report that no such path exists



Breadth-First Search 11

DFS vs. BFS

Back edge (v,w)
• w is an ancestor of v in the tree 

of discovery edges

Cross edge (v,w)
• w is in the same level as v or in the 

next level in the tree of discovery 
edges
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DFS vs. BFS
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Applications DFS BFS
Spanning forest, connected 
components, paths, cycles Ö Ö

Shortest paths Ö

Biconnected components Ö


