Merge Sort

Divide-and-Conquer
Divide-and-conquer 1s a general algorithm design paradigm:
* Divide: divide the input data .S in two disjoint subsets S, and S,
* Recur: solve the subproblems associated with 8, and S,

— the base case for the recursion are subproblems of size 0 or 1
* Conquer: combine the solutions for §; and §, into a solution for .§

Merge-sort 1s a sorting algorithm based on the divide-and-conquer
paradigm

* Like heap-sort
— Uses a comparator
— Has O(n log n) running time
* Unlike heap-sort
— Does not use an auxiliary priority queue
— Accesses data in a sequential manner (suitable to sort data on a disk)

Merge Sort

Merge-sort on an input sequence 8 with n elements consists of three steps:

* Divide: partition § into two sequences .S, and 8, of about n/2 elements
each

* Recur: recursively sort 8, and S,
* Conquer: merge S, and S, into a unique sorted sequence

Algorithm mergeSort(S, C)
Input sequence S with n elements, comparator C
Output sequence S sorted according to C
if S.size() > 1
(8, S,) < partition(S, n/2)
mergeSort(S,, C)
mergeSort(S,, C)
S <« merge(S,, S))

Merging two sorted sequences

The conquer step of merge- Algorithm merge(A, B)
sort consists of merging two Input sequences A and B with n/2 elements each
sorted sequences 4 and B into Output sorted sequence of AU B

a sorted sequence S
containing the union of the
elements of 4 and B

§ < empty sequence
while —A.isEmpty() A —B.isEmpty()
if A.first().element() < B.first().element()
S.insertLast(A.remove(A.first()))
else
Merging two sorted S.insertLast(B.remove(B.first()))
sequences, each with n/2 while —A.isEmpty()

elements, takes O(n) time S.insertLast(A.remove(A.firsK()))
while —B.isEmpty()
S.insertLast(B.remove(B.first()))

return S

Merge Sort 4

Merge-Sort Tree

An execution of merge-sort is depicted by a binary tree

* each node represents a recursive call of merge-sort and stores
— unsorted sequence before the execution and its partition
— sorted sequence at the end of the execution

 the root is the initial call

* the leaves are calls on subsequences of size 1

mEaalEs

Merge Sort

Execution Example

 Partition

Execution Example (cont.)

* Recursive call, partition

Execution Example (cont.)

* Recursive call, partition

Execution Example (cont.)

 Recursive call, base case

Execution Example (cont.)

 Recursive call, base case

""""""""

(9 (>2)

————————————

Execution Example (cont.)

* Merge

NN N

(57 >2)

————————————

Execution Example (cont.)

* Recursive call, ..., base case, merge

727 222] [929 [424

Merge Sort 12

Execution Example (cont.)

* Merge

~ N

727 222] [929 [424

Merge Sort 13

Execution Example (cont.)

~ N

727 222]) {929 (424 [323) 329 (629 (1o

Merge Sort

Execution Example (cont.)

* Merge

727 222]) {929 (424 [323) 329 (629 (1o

Merge Sort

Analysis of Merge-Sort

* The height A of the merge-sort tree 1s O(log n)
— at each recursive call we divide the sequence in half

* The overall amount or work done at the nodes of depth i 1s O(n)
— we partition and merge 2‘ sequences of size n/2*
— we make 2! recursive calls

* Thus, the total running time of merge-sort i1s O(n log n)

depth #segs size
0 1 n []

] 2 nl2 [) [)

1w S8 S5m 8 om

) |
J) O

Comparing sorting algorithms

Consider the following when evaluating a sorting algorithm:
* Time complexity
* Space complexity
— An in-place algorithm requires only n + O(1) space, using the
already given space for the n elements and O(1) additional space
» Stability
— A sorting algorithm is stable 1f it preserves the original relative
ordering of elements with equal value
— Ex: Unsorted sequence (B, b, a, ¢). Suppose B=banda<b <c.
 Stable sorted: (a, B, b, ¢)
» Unstable sorted: (a, b, B, ¢)

— Necessary if we want to sort repeatedly by different attributes
(i.e., sort by first name, then sort again by last name)

Summary of Sorting Algorithms

Algorithm

heap-sort

Time

O(n log n)

Notes

® in-place
not stable
for large data sets (1K — 1M)

merge-sort

O(n log n)

@ not in-place

@ stable

sequential data access

for huge data sets (> 1M)

Merge Sort

18

Other

* You are given a query point p and a set .S of n other points in two
dimensional space. Find k points out of the » points which are
nearest to p.

