Divide-and-Conquer Divide-and-conquer is a general algorithm design paradigm: - Divide: divide the input data S in two disjoint subsets S_1 and S_2 - Recur: solve the subproblems associated with S_1 and S_2 - the base case for the recursion are subproblems of size 0 or 1 - Conquer: combine the solutions for S_1 and S_2 into a solution for S Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm - Like heap-sort - Uses a comparator - Has $O(n \log n)$ running time - Unlike heap-sort - Does not use an auxiliary priority queue - Accesses data in a sequential manner (suitable to sort data on a disk) #### Merge Sort Merge-sort on an input sequence S with n elements consists of three steps: - Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each - Recur: recursively sort S_1 and S_2 - Conquer: merge S_1 and S_2 into a unique sorted sequence ``` Algorithm mergeSort(S, C) Input sequence S with n elements, comparator C Output sequence S sorted according to C if S.size() > 1 (S_1, S_2) \leftarrow partition(S, n/2) mergeSort(S_1, C) mergeSort(S_2, C) S \leftarrow merge(S_1, S_2) ``` ### Merging two sorted sequences The conquer step of mergesort consists of merging two sorted sequences A and B into a sorted sequence Scontaining the union of the elements of A and B Merging two sorted sequences, each with n/2 elements, takes O(n) time ``` Algorithm merge(A, B) Input sequences \boldsymbol{A} and \boldsymbol{B} with \boldsymbol{n}/2 elements each Output sorted sequence of A \cup B S \leftarrow empty sequence while \neg A.isEmpty() \land \neg B.isEmpty() if A.first().element() \leq B.first().element() S.insertLast(A.remove(A.first())) else S.insertLast(B.remove(B.first())) while \neg A.isEmpty() S.insertLast(A.remove(A.first())) while \neg B.isEmpty() S.insertLast(B.remove(B.first())) return S ``` #### Merge-Sort Tree An execution of merge-sort is depicted by a binary tree - each node represents a recursive call of merge-sort and stores - unsorted sequence before the execution and its partition - sorted sequence at the end of the execution - the root is the initial call - the leaves are calls on subsequences of size 1 # **Execution Example** • Partition • Recursive call, partition • Recursive call, partition • Recursive call, base case • Recursive call, base case Merge • Recursive call, ..., base case, merge Merge Merge ### Analysis of Merge-Sort - The height h of the merge-sort tree is $O(\log n)$ - at each recursive call we divide the sequence in half - The overall amount or work done at the nodes of depth i is O(n) - we partition and merge 2^i sequences of size $n/2^i$ - we make 2^{i+1} recursive calls - Thus, the total running time of merge-sort is $O(n \log n)$ #### ## Comparing sorting algorithms Consider the following when evaluating a sorting algorithm: - Time complexity - Space complexity - An in-place algorithm requires only n + O(1) space, using the already given space for the n elements and O(1) additional space - Stability - A sorting algorithm is stable if it preserves the original relative ordering of elements with equal value - Ex: Unsorted sequence (\mathbf{B} , \mathbf{b} , \mathbf{a} , \mathbf{c}). Suppose $\mathbf{B} = \mathbf{b}$ and $\mathbf{a} < \mathbf{b} < \mathbf{c}$. - Stable sorted: (a, **B**, b, c) - Unstable sorted: (a, b, B, c) - Necessary if we want to sort repeatedly by different attributes (i.e., sort by first name, then sort again by last name) # Summary of Sorting Algorithms | Algorithm | Time | Notes | |----------------|---------------|--| | selection-sort | $O(n^2)$ | in-placenot stablefor small data sets (< 1K) | | insertion-sort | $O(n^2)$ | in-placestablefor small data sets (< 1K) | | heap-sort | $O(n \log n)$ | in-place not stable for large data sets (1K — 1M) | | merge-sort | $O(n \log n)$ | not in-place stable sequential data access for huge data sets (> 1M) | #### Other • You are given a query point p and a set S of n other points in two dimensional space. Find k points out of the n points which are nearest to p.