Red-Black Trees

Outline

From (2,4) trees to Red-Black trees
Definition and height
Search
Insertion
— Restructuring
— Recoloring
Deletion
— Restructuring
— Recoloring
— Adjustment

(2,4) Trees

A multi-way search tree, where an internal node has k& children and
stores k-1 elements, and it has the following additional properties:

* Node-Size property: all internal nodes have at most four children
(i.e., k=2,3,4)
* Depth property: all external nodes have the same depth

Depending on the number of children, an internal node is called either a

2-node, 3-node, or 4-node
3-node

From (2,4) to Red-Black Trees

* Ared-black tree is a representation of a (2,4) tree by means of a
binary tree whose nodes are colored red or black.

* In comparison with a (2,4) tree, a red-black tree has
— same logarithmic time performance

— simpler implementation with a single node type

SR TR
g g g
o

or

Red-Black Trees

Red-Black Trees

A binary search tree with nodes colored red and black in a way that
satisfies the following color properties:

1.

2.
3.
4

Root property: the root is black.

External property: every leaf is black.

Internal property: the children of a red node are black.
Depth property: all leaves have the same black depth.

Red-Black Trees

Ex: Is it a Red-Black Tree?

Violates root & internal property

Yes No
Yes . No
Violates external property

Ex: Is it a Red-Black Tree?

Black depth =2 /

Black depth =4

No
Violates depth property

Height of a Red-Black Tree

Theorem: A red-black tree storing n items has height O(log n)

Proof:

Consider the shortest path (left)
and longest path (right) from the
root to an external node.

Let T* be the portion of the tree T consisting of all nodes with depth < /4*
T* is complete. Thus, 2* <logn.
Because 4 <2h*, h <2logn € O(log n).

* The search algorithm for a red-black tree is the same as that for a
binary search tree.

* By the above theorem, searching takes O(log n) time

Insertion

Use insertion algorithm for binary search trees and color red the newly
inserted node z, unless it’s the root.

— we preserve the root, external, and depth properties

— if the parent v of z is black, we also preserve the internal property
and we are done

& I

Insertion

* Use insertion algorithm for binary search trees and color red the newly
inserted node z, unless it’s the root.

— we preserve the root, external, and depth properties

— 1f the parent v of z 1s black, we also preserve the internal property
and we are done

— if the parent v of z is red, we have a double red (a violation of the
internal property), which requires a reorganization of the tree

 EXx: Insert 4 causes a double red

: =) :

Red-Black Trees 10

Fixing a Double Red

Consider a double red with child z and parent v, and let w be the sibling of v

e (Case l: wis black

w Vv
ﬂ/az;(|:> Restructuring

e (Case2:wisred

w | 2
/R/az;'\ |:> Recoloring

Note: pictures with dangling edges are a

visualization of a small portion of larger tree
Red-Black Trees 11

Restructuring

Consider a double red with child z and parent v and let w be the sibling of .
Let u be the parent of v.

a=u
b=z
c=y

1. Relabel nodes z, v, u temporarily as a, b, ¢ so that a, b, ¢ will be visited
in this order by an inorder tree traversal.

2. Replace u with the node labeled b (colored black). Make nodes a and ¢
the left and right child of b (each colored red).

Red-Black Trees 12

Restructuring

There are four restructuring configurations depending on the in-order
traversal of nodes z, v, u

Inorder
traversal:

u,, v

u, v,z

Red-Black Trees 13

Fixing a Double Red

Consider a double red with child z and parent v, and let w be the sibling of v

e (Case l: wis black

w Vv
Q/az;‘\ |:> Restructuring

e (Case2:wisred

w | 2
‘/az;'\ |:> Recoloring

Red-Black Trees 14

Recoloring

Consider a double red with child z and parent v, and let w be the sibling of .
Let u be the parent of v.

u

1. Color v and w black.
2. Color u red, unless it’s the root.

3. If the double-red problem reappears at u, then repeat the process for
fixing two reds at u (either with restructuring or recoloring).

Fixes problem locally, but can propagate double-red problem up the tree.

Red-Black Trees 15

Analysis of Insertion

Algorithm insertltem(k, o)

1. We search for key k to locate the

mnsertion node z

2. We add the new item (k, o) at
node z and color z red

3. while doubleRed(7)
if isBlack(sibling(parent(z)))
restructure(z)
return

else { sibling(parent(z) is red }

7 < recolor(z)

Recall that a red-black tree has
O(log n) height
Step 1 takes O(log n) time
because we visit O(log n) nodes
Step 2 takes O(1) time
Step 3 takes O(log n) time
because we perform
— O(log n) recolorings, each
taking O(1) time, and
— at most one restructuring taking
O(1) time
Thus, an insertion in a red-black
tree takes O(log n) time

Deletion

* Use deletion algorithm for binary search trees so as to delete internal
node v and its external child w. Let r be the sibling of w.

— 1f v is red or r 1s red, then color r black and we are done.

Deletion

* Use deletion algorithm for binary search trees so as to delete internal
node v and its external child w. Let r be the sibling of w.

— 1f v is red or r 1s red, then color r black and we are done.

— otherwise (v and r are black) we color r double black, which
requires a reorganization of the tree

 Ex: Delete 8 causes a double black

SR

Fixing a Double Black

Let y be the sibling and x be the parent of the double black node. The
algorithm to fix a double black node considers three cases:

Case 1: y 1s black and has a red child z
* We perform a restructuring on y, x, z, and we are done

Fixing a Double Black

Let y be the sibling and x be the parent of the double black node. The
algorithm to fix a double black node considers three cases:

Case 1: y 1s black and has a red child z
* We perform a restructuring on y, x, z, and we are done

Case 2: y 1s black and its children are both black

* We perform a recoloring. Color r black, and y red.
— If x 1s red, color it black. Otherwise, color x double-black.
— This may propagate up the double black violation

Fixing a Double Black

Let y be the sibling and x be the parent of the double black node. The
algorithm to fix a double black node considers three cases:

Case 1: y 1s black and has a red child z
* We perform a restructuring on y, x, z, and we are done

Case 2: y 1s black and its children are both black

* We perform a recoloring. Color r black, and y red.
— If x 1s red, color it black. Otherwise, color x double-black.
— This may propagate up the double black violation

Case 3: yisred
* We perform an adjustment, after which either Case 1 or Case 2 applies

Deletion in a red-black tree takes O(log n) time.

Red-Black Tree Reorganization

Insertion
_ result
(fix double red)
restructuring double red removed
recoloring double red removed or propagated up
Deletion
: result
(fix double black)
restructuring double black removed
recoloring double black removed or propagated up
adjustment restructuring or recoloring follows

