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Ordered Dictionaries
• Keys are ordered

• Perform usual dictionary operations (insertItem, removeItem, 
findElement) and maintain an order relation for the keys
– we use an external comparator for keys

• New operations: 
– closestKeyBefore(k), closestElemBefore(k)
– closestKeyAfter(k),  closestElemAfter(k)

• A special sentinel, NO_SUCH_KEY, is returned if no such item 
in the dictionary satisfies the query



Binary Search
• Items are ordered in a sorted sequence
• Find an element k
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Binary Search
• Items are ordered in a sorted sequence
• Find an element k

– After checking a key j in the sequence, we can tell if item with
key k will come before or after it

– Which item should we compare against first?
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The middle



Binary Search: Find k = 52

Binary Search Trees 5

11 18 22 34 41 52 54 63 68 74
0       1       2      3       4       5      6       7      8       9

low high

S

mid ←  ⌊(low + high) / 2⌋
if key(mid) = k   then return elem(mid)
if key(mid) <  k  then return BinarySearch(S, k, mid + 1, high)

Algorithm BinarySearch(S, k, low, high):

if key(mid) >  k  then return BinarySearch(S, k, low, mid -1)

if low > high   then return NO_SUCH_KEY



Binary Search: Find k = 52
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S
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if key(mid) = k   then return elem(mid)
if key(mid) <  k  then return BinarySearch(S, k, mid + 1, high)
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if low > high   then return NO_SUCH_KEY



Binary Search
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mid ←  ⌊(low + high) / 2⌋
if key(mid) = k   then return elem(mid)
if key(mid) <  k  then return BinarySearch(S, k, mid + 1, high)

Algorithm BinarySearch(S, k, low, high):

if key(mid) >  k  then return BinarySearch(S, k, low, mid -1)

if low > high   then return NO_SUCH_KEY

Each successive call to BinarySearch halves the input, so the running time is O(logn)
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Lookup Table
• A dictionary implemented by means of an array-based sequence 

which is sorted by key
– why use an array-based sequence rather than a linked list?

• Performance:
– insertItem takes O(n) time to make room by shifting items
– removeItem takes O(n) time to compact by shifting items
– findElement takes O(log n) time, using binary search

• Effective only for
– small dictionaries, or
– when searches are the most common operations, while 

insertions and removals are rarely performed



Binary Search Tree
• A binary search tree is a binary tree where each internal node stores 

a (key, element)-pair, and 
– each element in the left subtree is smaller than the root
– each element in the right subtree is larger than the root
– the left and right subtrees are binary search trees

• An inorder traversal visits items in ascending order
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BST – Insert(k, v)
• Idea

– find a free spot in the tree and add a node which stores that item 
(k, v)

• Strategy 
– start at root r
– if k < key(r), continue in left subtree
– if k > key(r), continue in right subtree

• Runtime is O(h), where h is the height of the tree
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BST – Insert Example
Insert the numbers 22, 80, 18, 9, 90, 20.
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BST – Insert Example
Insert the numbers 22, 80, 18, 9, 90, 20.
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BST – Insert Example
Insert the numbers 22, 80, 18, 9, 90, 20.
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BST – Insert Example
Insert the numbers 22, 80, 18, 9, 90, 20.
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BST – Insert Example
Insert the numbers 22, 80, 18, 9, 90, 20.
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BST – Insert Example
Insert the numbers 22, 80, 18, 9, 90, 20.
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BST – Insert Example
Insert the numbers 22, 80, 18, 9, 90, 20.

Binary Search Trees 19

22

8018

9 9020



BST - Find
• Find the node with key k

• Strategy
– start at root r
– if k = key(r), return r
– if k < key(r), continue in left subtree
– if k > key(r), continue in right subtree

• Runtime is O(h), where h is the height of the tree
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BST – Find Example
Find the number 20
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BST - Delete
• Delete the node with key k

• Strategy: let n be the position of FindElement(k)
– Remove n without creating “holes” in the tree
– Case 1: n has at least one child which is an external node
– Case 2: n has two children with internal nodes

• Runtime is O(h), where h is the height of the tree
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BST – Delete Example
Case 1(a): n has two children which are external nodes

Delete 9
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BST – Delete Example
Case 1(b): n has two children which are external nodes

Delete 9
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BST – Delete Example
Case 1: n has a child which is an internal node

Delete 80
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BST – Delete Example
Case 1: n has a child which is an internal node

Delete 80

Binary Search Trees 26

22

18

9

90

20



BST – Delete Example
Case 2: n has two children which are internal nodes
Find the first internal node m that follows n in an inorder traversal
Replace n with m

Delete 18
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BST – Delete Example
Case 2: n has two children which are internal nodes
Find the first internal node m that follows n in an inorder traversal
Replace n with m

Delete 18
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BST Performance
Space used is O(n)
Runtime of all operations is O(h)
• What is h in the worst case?

Consider inserting the sequence 1, 2, …, n – 1, n

Worst case height h ∈ O(n).
• How do we keep the tree balanced?
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Dictionary: Worst-case Comparison
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Unordered Ordered

Log
file

Hash table Lookup
table

Binary 
Search Tree

Balanced
Trees

size, isEmpty O(1) O(1) O(1) O(1) O(1)

keys, elements O(n) O(n) O(n) O(n) O(n)

findElement O(n) O(n)** O(logn) O(h) O(logn)

insertItem O(1) O(n)** O(n) O(h) O(logn)

removeElement O(n) O(n)** O(n) O(h) O(logn)

closestKey
closestElem

O(n) O(n) O(logn) O(h) O(logn)

** Expected
running time
is O(1)



Other
• You are given two sorted integer arrays A and B such that no integer 

is contained twice in the same array. A and B are nearly identical. 
However, B is missing exactly one number. Find the missing number 
in B.

• You are given a sorted array A of distinct integers. Determine 
whether there exists an index i such that A[i] = i.
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