Priority Queues

Priority Queue ADT

- Stores a collection of (key, element) pairs
- Main methods
 - insertItem(k, o): inserts an item with key k and element o
 - removeMin(): removes the item with smallest key and returns its element
 - minKey(): returns, but does not remove, the smallest key of an item
 - minElement(): returns, but does not remove, the element of an item with smallest key
 - size(), isEmpty()
- Applications:
 - Multithreading
 - Triage

Keys must be comparable

- Keys in a priority queue can be arbitrary objects on which a total order relation is defined
- A generic priority queue uses an auxiliary Comparator ADT
 - Encapsulates the action of comparing two objects according to a given total order relation
 - The comparator is external to the keys being compared
 - When the priority queue needs to compare two keys, it uses its comparator
 - isLessThan (x,y)
 - isLessThanOrEqualTo(x,y)
- isGreaterThan(x, y)
- isGreaterThanOrEqualTo(x,y)

• isEqualTo(x,y)

Suppose you are given a priority queue implementation, so you have the following operations to work with:

```
insertItem(k, o)
removeMin()
minKey()
minElement()
size()
isEmpty()
```

How can you use it to sort a sequence **S** of numbers?

Sorting with a Priority Queue

We can use a priority queue to sort a set of comparable elements

- 1. Insert the elements one by one with a series of insertItem(e, e) operations
- 2. Remove the elements in sorted order with a series of removeMin() operations

Running time depends on the priority queue implementation

```
Algorithm PQ	ext{-}Sort(S, C)
Input sequence S, comparator C for the elements of S
Output sequence S sorted in increasing order according to C
P \leftarrow \text{priority queue with comparator } C
while \neg S.isEmpty()
e \leftarrow S.remove(S.first())
P.insertItem(e, e)
while \neg P.isEmpty()
e \leftarrow P.removeMin()
S.insertLast(e)
```

Sequence-based Priority Queue

Implementation with an unsorted sequence

- Store the items of the priority queue in a list-based sequence, in arbitrary order
- insertItem takes O(1) time since we can insert the item at the beginning or end of the sequence
- removeMin, minKey and minElement take O(n) time since we have to traverse the entire sequence to find the smallest key

Implementation with a sorted sequence

- Store the items of the priority queue in a sequence, sorted by key
- insertItem takes O(n) time since we have to find the place where to insert the item
- removeMin, minKey and minElement take O(1) time since the smallest key is at the beginning of the sequence

Selection-Sort

- Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence
- Running time of Selection-sort:
 - 1. Inserting the elements into the priority queue with n insertItem operations takes O(n) time
 - 2. Removing the elements in sorted order from the priority queue with *n* removeMin operations takes time proportional to

$$1 + 2 + ... + n$$

• Runs in $O(n^2)$ time

Insertion-Sort

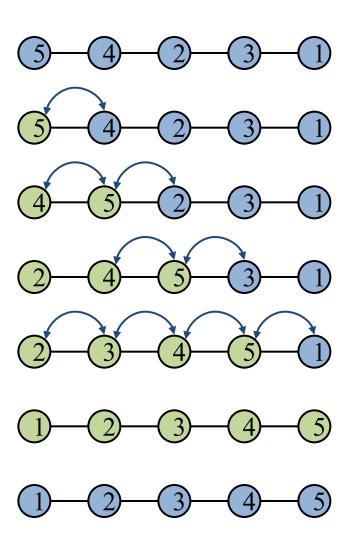
- Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence
- Running time of Insertion-sort:
 - 1. Inserting the elements into the priority queue with *n* insertItem operations takes time proportional to

$$1 + 2 + \ldots + n$$

- 2. Removing the elements in sorted order from the priority queue with a series of n removeMin operations takes O(n) time
- Runs in $O(n^2)$ time

In-place Insertion-sort

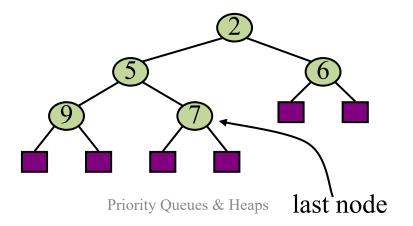
- Instead of using an external data structure, we can implement selectionsort and insertion-sort in-place
- A portion of the input sequence itself serves as the priority queue
- For in-place insertion-sort
 - We keep sorted the initial portion of the sequence
 - We can use swapElements instead of modifying the sequence



Heap-Based Priority Queue

What is a Heap

- A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
 - Heap-Order: for every internal node v other than the root, $key(v) \ge key(parent(v))$
 - Complete Binary Tree: let h be the height of the heap
 - for i = 0, ..., h 2, there are 2^i internal nodes of depth i
 - at depth h 1, the internal nodes are to the left of the external nodes
- The last node of a heap is the rightmost internal node of depth h-1

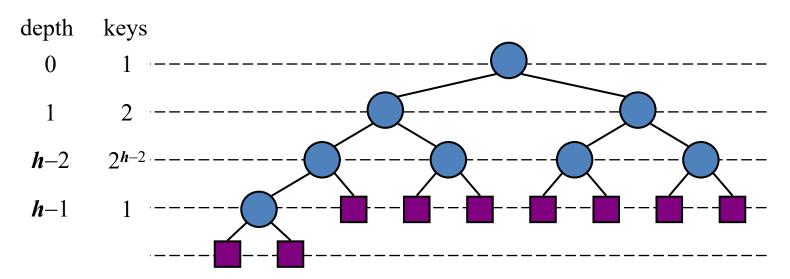


Height of a Heap

Theorem: A heap storing n keys has height $O(\log n)$

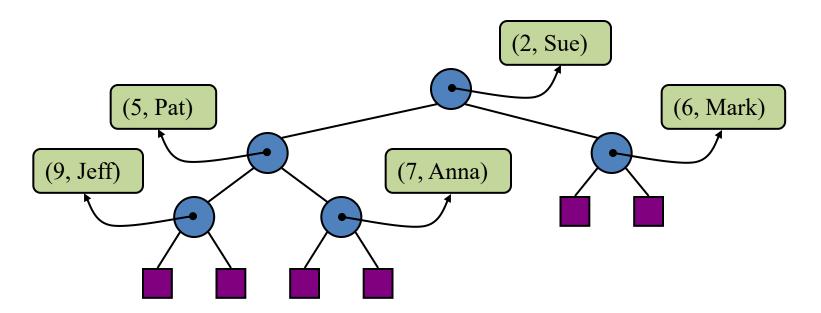
Proof: (we apply the complete binary tree property)

- Let *h* be the height of a heap storing *n* keys
- Since there are 2^i keys at depth i = 0, ..., h 2 and at least one key at depth h 1, we have $n \ge 1 + 2 + 4 + ... + 2^{h-2} + 1$
- Thus, $n \ge 2^{h-1}$, i.e., $h \le \log n + 1$



Heaps and Priority Queues

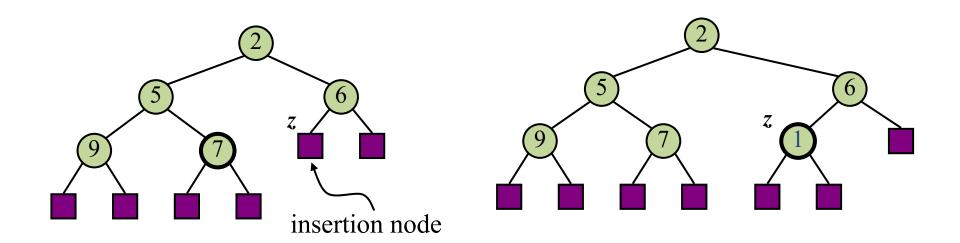
- We can use a heap to implement a priority queue
- We keep track of the position of the last node
- We store a (key, element) item at each internal node
- For simplicity, we show only the keys in the pictures



Insertion into a Heap: insertItem(k,o)

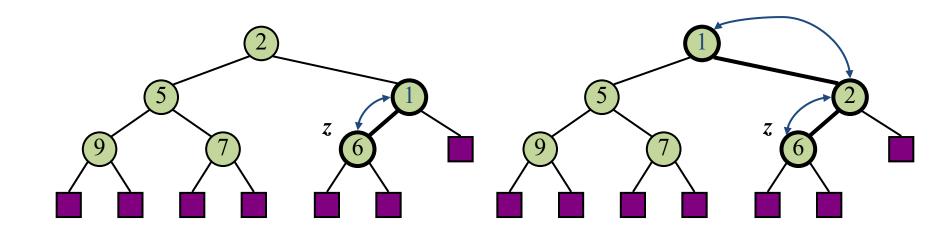
Consists of three steps:

- Find the insertion node z (the new last node)
- Store k at z and expand z into an internal node
- Restore the heap-order property (discussed next)



Upheap Bubbling

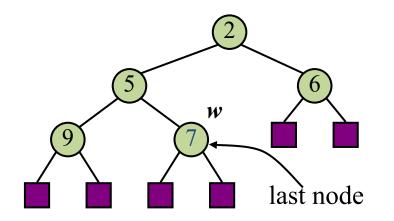
- After the insertion of a new key k, the heap-order property may be violated
- Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- Terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

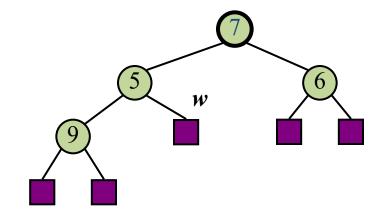


Removal from a Heap: removeMin()

Consists of three steps

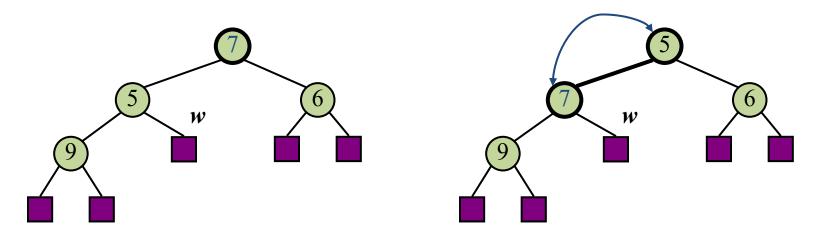
- Replace the root key with the key of the last node w
- Compress w and its children into a leaf
- Restore the heap-order property (discussed next)





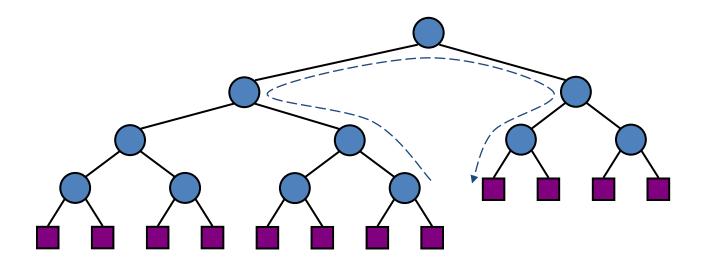
Downheap Bubbling

- After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k with the smallest key among children along a downward path from the root
- Terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time



Finding the new Last Node

- The last node can be found by traversing a path of $O(\log n)$ nodes
 - While the current node is a right child, go to the parent node
 - If the current node is a left child of v, go to the right child of v
 - While the current node is internal, go to the left child
- Similar algorithm for updating the last node after a removal



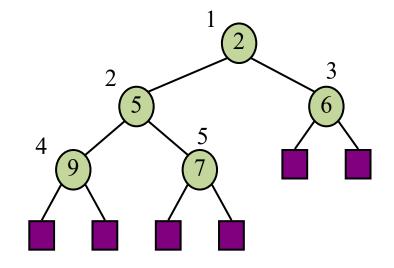
Heap-Sort

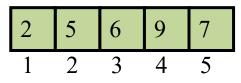
- Consider a priority queue with *n* items implemented by means of a heap
 - the space used is O(n)
 - methods insertItem and removeMin take $O(\log n)$ time
 - methods size, is Empty, minKey, and minElement take time O(1) time
- Using a heap-based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time
 - much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort

Vector-based Heap Implementation

We can represent a heap with n keys by means of a vector of length n + 1

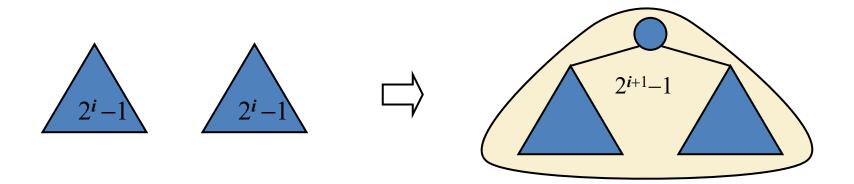
- For the node at rank *i*
 - left child is at rank 2i
 - right child is at rank 2i + 1
- What does not need to be stored:
 - links between nodes
 - leaves
- The cell at rank 0 is not used
- Last node is at rank *n*
 - insertItem inserts at rank n + 1
 - removeMin removes at rank n (after swapping root with last node)
- Yields in-place heap-sort





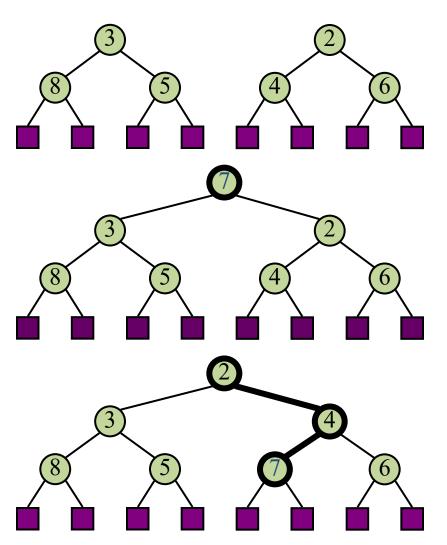
Bottom-up Heap Construction

- If all keys are known in advance, we can build a heap recursively
- For simplicity, assume number of keys $n = 2^h 1$ so the heap is a complete binary tree, so each depth i = 0, ..., h 2 contains 2^i containing internal nodes
- Given *n* keys, build heap using a bottom-up construction with log *n* phases
- In phase i, pairs of heaps with $2^{i}-1$ keys are merged into heaps with $2^{i+1}-1$ keys

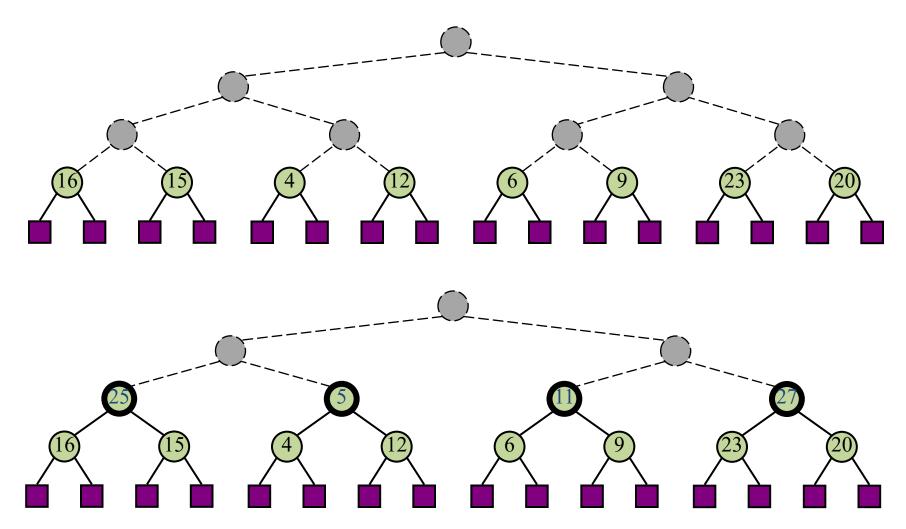


Merging Two Heaps

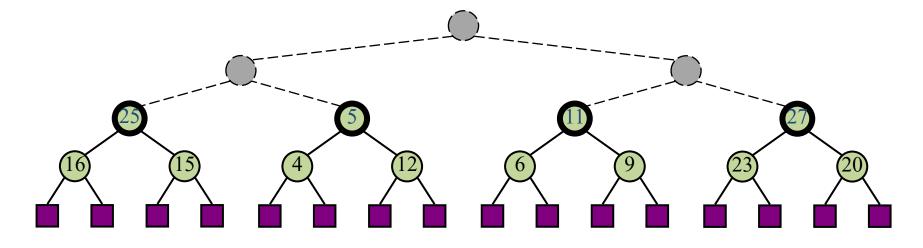
- We are given two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heap-order property

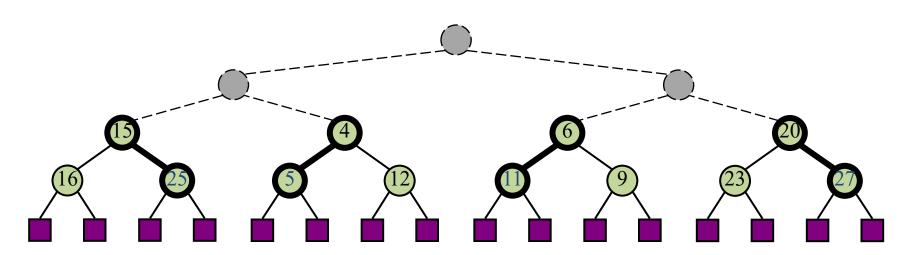


Example

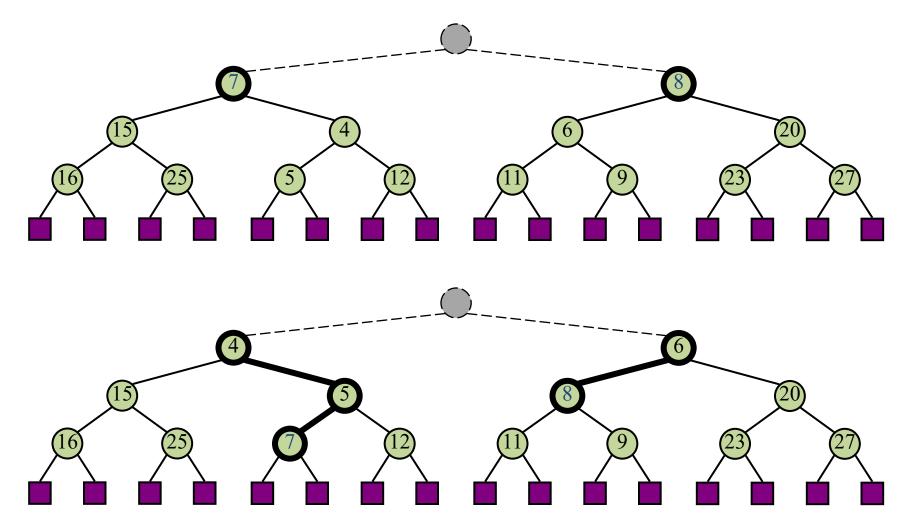


Example (contd.)

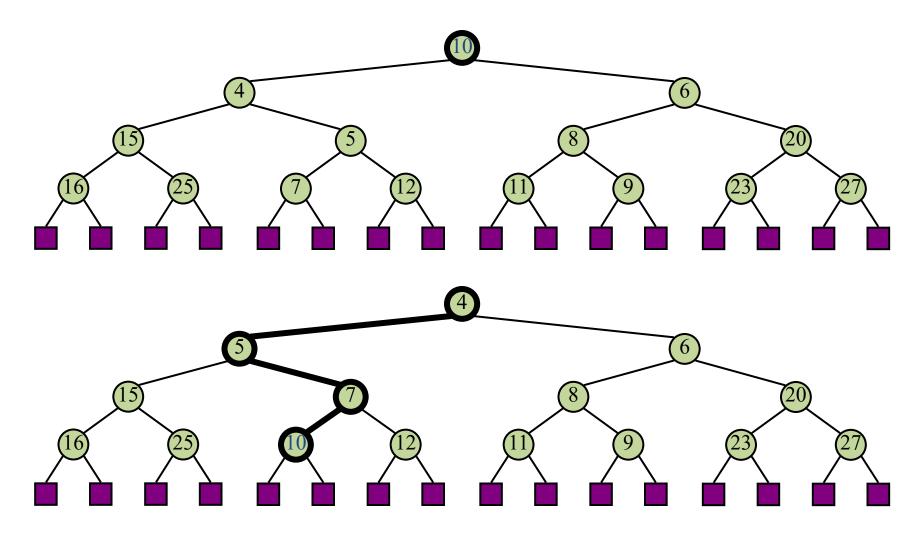




Example (contd.)



Example (end)



Analysis

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path)
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n)
- Thus, bottom-up heap construction runs in O(n) time
- Bottom-up heap construction is faster than *n* successive insertions and speeds up the first phase of heap-sort

