For each of the following recurrence equations which describe the running time T(n) of a recursive algorithm, use the master method to express the asymptotic complexity (assuming that T(n) = c for n < d, for constants c > 0 and $d \ge 1$).

Example 1. $T(n) = 9T(n/3) + n^2$ Then, $f(n) = n^2$ and $n^{\log_b(a)} = n^{\log_3(9)} = n^2$. By case 2 (with k = 0) of the master theorem, $T(n) = \Theta(n^2 \log n)$.

Example 2. T(n) = 4T(n/2) + nThen, f(n) = n and $n^{\log_b(a)} = n^{\log_2(4)} = n^2$. By case 1 of the master theorem, $T(n) = \Theta(n^2)$.

Example 3. $T(n) = 8T(n/8) + n^2 \log n$ Then, $f(n) = n^2 \log n$ and $n^{\log_b(a)} = n^{\log_8(8)} = n$. By case 3 of the master theorem, $T(n) = \Theta(n^2 \log n)$.

Example 4. T(n) = 4T(n/4) + nThen, f(n) = n and $n^{\log_b(a)} = n^{\log_4(4)} = n$. By case 2 of the master theorem (with k = 0), $T(n) = \Theta(n \log n)$.

Example 5. $T(n) = 4T(n/2) + n^2 \log^3 n$ Then, $f(n) = n^2 \log^3 n$ and $n^{\log_b(a)} = n^{\log_2(4)} = n^2$. By case 2 (with k = 3) of the master theorem, $T(n) = \Theta(n^2 \log^4 n)$.

Example 6. $T(n) = 4T(n/2) + \log n$ Then, $f(n) = \log n$ and $n^{\log_b(a)} = n^{\log_2(4)} = n^2$. By case 1 of the master theorem, $T(n) = \Theta(n^2)$.

Example 7. $T(n) = 4T(n/4) + n^2$ Then, $f(n) = n^2$ and $n^{\log_b(a)} = n^{\log_4(4)} = n$. By case 3 of the master theorem, $T(n) = \Theta(n^2)$.

Example 8. $T(n) = 7T(n/3) + \log n$ Then, $f(n) = \log n$ and $n^{\log_b(a)} = n^{\log_3(7)} = n^{1.7712437}$. By case 1 of the master theorem, $T(n) = \Theta(n^{\log_3(7)})$.