Directed Graphs (Digraphs)

Outline and Reading

Reachability (6.4.1)
e Directed DFS

e Strong connectivity

Transitive closure (6.4.2)
* The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAGs) (6.4.4)
* Topological Sorting

Digraphs

A digraph (short for “directed graph™) is a graph whose edges are all directed
* Ex: Edge (a,b) goes from a to b, but not b to a.

Properties:
o If Gissimple, m < n(n-1).

* If we keep in-edges and out-edges in separate
adjacency lists, we can perform listing of the
sets of in-edges and out-edges in time
proportional to their size.

Applications include one-way streets, flights, and
task scheduling.

Digraph Application

Scheduling: edge (a,b) means task @ must be completed before b can be started.

Digraphs 4

Directed DFS

* We can specialize the traversal
algorithms (DFS and BFS) to digraphs
by traversing edges only along their
direction

* In the directed DFS algorithm, we have
four types of edges

— discovery edges
— back edges

— forward edges
— cross edges

* A directed DFS starting at a vertex s
determines the vertices reachable from s

Digraphs 5

Reachabillity

DFS tree rooted at v: vertices reachable from v via directed paths

Applications:

* Dead code detection/elimination

* Garbage collection @ Reachable
from C

>@ Reachable
from B

. o\
Strong Connectivity i’
Each vertex can reach all other vertices \ ‘

 How can we test if G 1s strongly connected?

Strong Connectivity
Algorithm

Determine if G 1s strongly connected
 Pickavertexvin G
* Perform a DFS fromvin G

— If there’s a w not visited, print “no”
* Let G’ be G with edges reversed
* Perform a DFS from vin G’

— If there’s a w not visited, print “no”

— Else, print “yes”

Running time: O(n+m).

Strongly Connected
Components

A strongly connected component 1s a maximal subgraph such that each
vertex can reach all other vertices in the subgraph

* Can also be done in O(n+m) time using DFS, but 1s more complicated
(similar to biconnectivity).

Digraphs

9

Transitive Closure

Given a digraph G, the transitive
closure of G is the digraph G* such that

* G* has the same vertices as G e

* 1f G has a directed path from u to v
(u #v), G* has a directed edge from
utov

The transitive closure provides
reachability information about a

digraph. e
(&) 6"

Computing the Transitive Closure

* One idea: perform DFS starting at each vertex
— This is O(n(n+m)) time
— Recall that m is O(n?)

* Second idea: use dynamic programming

— Observe that 1f there’s a way to get from A to B and from B to C,
then there’s a way to get from A to C.

— This becomes part of our subproblem characterization

— This 1s known as Floyd-Warshall’s algorithm, which runs in
O(n’) time using an adjacency matrix

Floyd-Warshall Transitive Closure

 Number the vertices 1, 2, ..., n.

* Consider paths that use only vertices numbered 1, 2, ..., &, as
Intermediate vertices:

Uses only vertices numbered 1, ..., &
(add this edge if it's not already in)

._——-

Uses only vertices
numbered 1,..., k-1

Uses only vertices
numbered 1,..., k-1

Digraphs 12

Floyd-Warshall’ s Algorithm

Numbers the vertices of G as v,
..., ¥, and computes a series of
digraphs G, ..., G,
— G=G
— G has a directed edge (v;, v))
if G has a directed path from

v; to v; with intermediate
vertices in the set {v, ..., v;}

We have that G, = G*

In phase k, digraph G, is
computed from G}, _,

Running time: O(n?), assuming
areAdjacent 1s O(1) (e.g.,
adjacency matrix)

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
1« |
for all v € G.vertices()
denote v as v;
I«—i+1
Gy« G
for k< 1 ton do
Gy < Gy,
fori< 1 ton (i =k)do
forj <« 1 ton (j #i k)do
if G _,.areAdjacent(v;, v;) A
Gy _.areAdjacent(vy, v))
if —Gy.areAdjacent(v; v))
Gi.insertDirectedEdge(v;, v;, k)
return G,

Digraphs 13

Floyd-Warshall Example

Floyd-Warshall, Iteration 1

Floyd-Warshall, Iteration 2

Floyd-Warshall, lteration 3

Floyd-Warshall, Iteration 4

Floyd-Warshall, Iteration 5

Floyd-Warshall, Iteration 6

Floyd-Warshall, Conclusion

DAGs and Topological Ordering

* A directed acyclic graph (DAG) 1s a
digraph that has no directed cycles

* Atopological ordering of a digraph is a
numbering v, ..., v, of the vertices such
that for every edge (v;, v;), we have i <j

* EX: in a task scheduling digraph, a
topological order is a task sequence that
satisfies the precedence constraints

Theorem
A digraph admits a topological ordering if
and only if it is a DAG
FAGE 3
DEPARTMENT (COURSE ~ DESCRIPTON PREREGS
COMPUTER | OPSC 432 | INTERMEDIATE COMPLER | CPSC 432
SCIENCE DESIGN, WITH A FOCUS ON
L DEPENDENCY RESOLUTION.

Topological
ordering of G

7
pve

xked #754

Topological Sorting

Number vertices, so that («,v) in E implies u <v

1 A typical student day

2 3
—-C_eat)

study computer sci.

s <,

Colay)+—
8
write program 6

9 Cvork out>
make cookies
for professors
10

G 1

dream about g@

Algorithm for Topological Sorting

* Note: This algorithm 1s different than the one in Goodrich-Tamassia

Method TopologicalSort(G)

H < G // Temporary copy of G

n < G.numVertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label v < n
n<—n-1
Remove v from H

* Running time: O(n + m). How...?

Digraphs 24

Topological Sorting
Algorithm using DFS

Simulate the algorithm by using DFS

Algorithm zopological DFS(G)
Input dag &

Output topological ordering of G
n < G.numVertices()

for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all ¢ € G.edges()
setLabel(e, UNEXPLORED)
for all v € G.vertices()
if getLabel(v) = UNEXPLORED
topological DFS(G, v)

O(n+m) time.

Digraphs

Algorithm zopological DFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the vertices of G
in the connected component of v

setLabel(v, VISITED)
for all e € G.outgoinglIncidentEdges(v)
if getLabel(e) = UNEXPLORED
w <— opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
topological DFS(G, w)
else
{e 1s a forward or cross edge}
Label v with topological number n
n<«<n-1

25

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

