
Greedy Method



Outline / Reading
• Greedy Method as a fundamental algorithm design technique

• Application to problems of:
– Making change
– Fractional Knapsack Problem (Ch. 5.1.1)
– Task Scheduling (Ch. 5.1.2)
– Minimum Spanning Trees (Ch. 7.3) [future lecture]

Greedy Method 2



Greedy Method Technique
• The greedy method is a general algorithm design paradigm, built on the 

following elements:
– configurations: different choices, collections, or values to find
– objective function: a score assigned to configurations, which we 

want to either maximize or minimize

• Idea: make a greedy choice (locally optimal) in hopes it will eventually 
lead to a globally optimal solution.

• It works best when applied to problems with the greedy-choice property
– a globally-optimal solution can always be found by a series of local 

improvements from a starting configuration.

Greedy Method 3



Making Change
• Problem: A dollar amount to reach and a collection of coin amounts to 

use to get there.
– configuration: A dollar amount yet to return to a customer plus the 

coins already returned
– objective function: Minimize number of coins returned.

• Greedy solution: Always return the largest coin you can.

• Ex. 1: Coins are valued $.32, $.08, $.01
– Has the greedy-choice property, since no amount over $.32 can be 

made with a minimum number of coins by omitting a $.32 coin 
(similarly for amounts over $.08, but under $.32).

• Ex. 2: Coins are valued $.30, $.20, $.05, $.01
– Does not have greedy-choice property, since $.40 is best made 

with two $.20’s, but the greedy solution will pick three coins 
(which ones?)

Greedy Method 4



Fractional Knapsack Problem
• Given: A set S of n items, with each item i having

– bi - a positive benefit
– wi - a positive weight

• Goal: Choose items with maximum total benefit but with weight at 
most W.

If we are allowed to take fractional amounts, then this is called the 
fractional knapsack problem.
• In this case, we let xi denote the amount we take of item i
• objective: maximize

Greedy Method 5

å
ÎSi

iii wxb )/( xi ≤W
i∈S
∑

• constraint:



Greedy Method 6

Example

Weight:

Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value: 3
($ per ml)

4 20 5 50
10 ml

Solution:
• 1 ml of item 5
• 2 ml of item 3
• 6 ml of item 4
• 1 ml of item 2

“knapsack”

• Given: A set S of n items, with each item i having
– bi - a positive benefit
– wi - a positive weight

• Goal: Choose items with maximum total benefit but with weight at 
most W.



Fractional Knapsack Algorithm

Greedy Method 7

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i

to maximize benefit with 
weight at most W

for each item i in S
xi ¬ 0           
vi ¬ bi  / wi {value}

w ¬ 0 {total weight}
while w < W 

remove item i with highest vi

xi ¬ min{wi , W - w}
w ¬ w + xi

Greedy choice: Keep taking item with 
highest value (benefit to weight ratio)
• Since 
• Run time: O(n log n). Why?

Correctness:
Suppose there is a optimal solution S* 
better than our greedy solution S.
• There is an item i in S with higher 

value than a chosen item j from S*, 
i.e., vi>vj but xi<wi and xj>0.

• If we substitute some i with j, we get a 
better solution in S*, a contradiction
– How much of i: min{wi-xi, xj}

• Thus, there is no better solution than 
the greedy one

åå
ÎÎ

=
Si

iii
Si

iii xwbwxb )/()/(



Task Scheduling
• Given: a set T of n tasks, each having:

– A start time, si
– A finish time, fi (where si < fi)

• Goal: Perform all the tasks using a minimum number of 
“machines.”

Greedy Method 8

1 98765432

Machine 1

Machine 3
Machine 2

Tasks: [3,7]   [1,4]   [1,3]    [4,7]   [6,9]   [7,8]   [2,5]



Task Scheduling Algorithm
Greedy choice: consider tasks by their 
start time and use as few machines as 
possible with this order.
• Run time: O(n log n). Why?

Correctness:
Suppose there is a better schedule.
• We can use k-1 machines
• The algorithm uses k
• Let i be first task scheduled on 

machine k
• Task i must conflict with k-1 other 

tasks
• But that means there is no non-

conflicting schedule using k-1 
machines

Greedy Method 9

Algorithm taskSchedule(T)
Input: set T of tasks w/ start time si
and finish time fi

Output: non-conflicting schedule 
with minimum number of machines
m ¬ 0 {no. of machines}
while T is not empty

remove task i w/ smallest si

if there’s a machine j for i then
schedule i on machine j

else
m ¬ m + 1
schedule i on machine m



Example
• Given: a set T of n tasks, each having:

– A start time, si
– A finish time, fi (where si < fi)
– [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

• Goal: Perform all tasks on min. number of machines

Greedy Method 10

1 98765432

Machine 1

Machine 3

Machine 2



Other
• The university has n classes it needs to schedule, using the minimum 

number of rooms possible.
– Each class has a start/end time. 
– Each class should have at least 15 minutes between when one 

class ends in that room to when another class begins in the same 
room.

Greedy Method 11


