
Elementary Data Structures

Stacks & Queues
Lists, Vectors, Sequences

Amortized Analysis
Trees



Stack ADT
• Container that stores arbitrary objects
• Insertions and deletions follow last-in first-out (LIFO) scheme

• Main operations
– push(object): insert element
– object pop(): remove and returns last element

• Auxiliary operations
– object top(): returns last element without removing it
– integer size(): returns number of elements stored
– boolean isEmpty(): returns whether no elements are stored
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Applications of Stacks
• Direct

– Page visited history in a web browser
– Undo sequence in a text editor
– Chain of method calls in C++ runtime environment

• Indirect
– Auxiliary data structure for algorithms
– Component of other data structures
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Array-based Stack
• Add elements from left to right in an array S of capacity N
• A variable t keeps track of the index of the top element
• Size is t+1
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S
0 1 2

…

Algorithm pop():
if isEmpty() then

throw EmptyStackException
else 

t ¬ t - 1
return S[t + 1]

Algorithm push(o):
if t = N-1 then

throw FullStackException
else 

t ¬ t + 1
S[t] ¬ o

O(1) O(1)

t



Extendable Array-based Stack
• In a push operation, when the array is full, we can replace the 

array with a larger one instead of throwing an exception
– Values in old array must be copied over to the new array

• How large should the new array be?
– incremental strategy: increase the size by a constant c
– doubling strategy: double the size
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Algorithm push(o)
if t = N-1 then

A ¬ new array of size N*
for i ¬ 0 to t do

A[i] ¬ S[i]
S ¬ A

t ¬ t + 1
S[t] ¬ o

N* = ?



Comparing the Strategies via 
Amortization

• Amortization: analysis tool to understand running times of 
algorithms that have steps with widely varying performance

• We compare incremental vs. doubling strategy by analyzing the total 
time T(n) needed to perform a series of n push operations

• We call amortized time of a push operation the average time taken 
by a push over a series of operations
– i.e., T(n) / n

• Assume we start with an empty stack represented by an empty array
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Incremental Strategy
• We replace the array k = n/c times

• Total time T(n) of a series of n push operations is proportional to:
n + c + 2c + 3c + 4c + … + kc

=  n + c(1 + 2 + 3 + … + k)
=  n + ck(k + 1)/2

• Since c is constant, T(n) is O(n + k2), which is O(n2)

• The amortized time of a push operation is O(n)
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Doubling Strategy
• We replace the array k = log2n  times
• Total time T(n) of a series of n push operations is proportional to:

n + 1 + 2 + 4 + 8 + … + 2k

= n + 2k+1 – 1
= n + 2logn + 1  – 1
= n + 2logn 21  – 1
= n + 2n - 1
= 3n – 1

• T(n) is O(n)
• The amortized time of a push operation is O(1)
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Recall the summation of this 
geometric series:



Accounting Method Analysis
• The accounting method determines amortized running time using a 

scheme of credits and debits

• View computer as a coin-operated devices that needs $1 (cyber-
dollar) for each primitive operation
– Set up an amortization scheme for charging operations
– Must always have enough money to pay for actual cost of 

operation
– Total cost of the series of operations is no more than the total 

amount charged

• (amortized time) £ (total $ charged) / (# operations)
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Accounting Method Analysis: 
Doubling Strategy

• How much to charge for a push operation?
– Charge $1?
– Charge $2?
– Charge $3 for a push: use $1 to pay for push, save $2 to 

pay for copying all old elements into new array.

• Each push runs in O(1) amortized time; n pushes run in O(n) 
time.
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No, not enough $$ to copy old elements

No, not enough $$ to copy old elements
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Queue ADT
• Container that stores arbitrary objects
• Insertions and deletions follow first-in first-out (FIFO) scheme

• Main operations
– enqueue(object): insert element at end
– object dequeue(): remove and returns front element

• Auxiliary operations
– object front(): returns front element without removing it
– integer size(): returns number of elements stored
– boolean isEmpty(): returns whether no elements are stored
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dequeueenqueue
end front



Applications of Queues

• Direct
– Waiting lines
– Access to shared resources
– Multiprogramming

• Indirect
– Auxiliary data structure for algorithms
– Component of other data structures
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Singly Linked List
• A data structure consisting of a sequence of nodes

• Each node stores an element and a link to the next node
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Queue with a Singly Linked List
• Singly Linked List implementation

– front is stored at the first node
– end is stored at the last node

• Space used is O(n) and each operation takes O(1) time
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List ADT
• A collection of objects ordered with respect to their position

(the node storing that element)
– each object knows who comes before and after it

• Allows for insert/remove in the “middle”
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• Query operations
– isFirst(p), isLast(p)

• Accessor operations
– first(), last()
– before(p), after(p)

• Update operations
– replaceElement(p, e)
– swapElements(p, q)
– insertBefore(p, e), insertAfter(p, e)
– insertFirst(e), insertLast(e)
– remove(p)



Doubly Linked List
• Provides a natural implementation of List ADT
• Nodes implement position and store

– element
– link to previous and next node

• Special head and tail nodes
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Insertion: insertAfter(p, X) 
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Deletion: remove(p)
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• We visualize remove(p), where p = last()
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Vector ADT
• A linear sequence that supports access to its elements by their 

rank (number of elements preceding it)

• Main operations:
– size()
– isEmpty()
– elemAtRank(r)
– replaceAtRank(r, e)
– insertAtRank(r, e)
– removeAtRank(r)
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Array-based Vector
• Use an array V of size N

• A variable n keeps track of the size of the vector (number of 
elements stored)

• elemAtRank(r) is implemented in O(1) time by returning V[r]
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V
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Insertion: insertAtRank(r, o)
• Need to make room for the new element by shifting forward the       

n - r elements V[r], …, V[n - 1]

• In the worst case (r = 0), this takes O(n) time

• We could use an extendable array when more space is required 
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Deletion: removeAtRank(r)
• Need to fill the hole left by the removed element by shifting 

backward the n - r - 1 elements V[r + 1], …, V[n - 1]

• In the worst case (r = 0), this takes O(n) time
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Sequence
• A generalized ADT that includes all methods from vector and list

ADTs
• Provides access to its elements from both rank and position
• Can be implemented with an array or doubly linked list
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Operation Array List
size, isEmpty O(1) O(1)
atRank, rankOf, elemAtRank O(1) O(n)

first, last, before, after O(1) O(1)

replaceElement, swapElements O(1) O(1)
replaceAtRank O(1) O(n)
insertAtRank, removeAtRank O(n) O(n)
insertFirst, insertLast O(1) O(1)
insertAfter, insertBefore O(n) O(1)
remove (at given position) O(n) O(1)
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Tree
• Stores elements hierarchically

• Each node has a parent-child relation

• Direct applications:
– Organizational charts
– File systems
– Programming environments
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Tree ADT

• Accessor methods:
– position root()
– position parent(p)
– PositionList children(p)

• Query methods:
– boolean isInternal(p)
– boolean isExternal(p)
– boolean isRoot(p)
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• Generic methods:
– integer size()
– boolean isEmpty()
– ObjectList elements()
– PositionList positions()
– swapElements(p, q)
– object replaceElement(p, o)

The positions in a tree are its nodes.



Tree Traversal         

A traversal visits the nodes of a tree in a systematic manner.
• preorder: a node is visited before its descendants

preOrder(A) visits ABEFCGHID

• postorder: a node is visited after its descendants

postOrder(A) visits EFBGHICDA
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Algorithm preOrder(v)
visit(v)
for each child w of v

preOrder (w)

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

O(n)

O(n)



(Full) Binary Trees
• A binary tree is a tree with the following properties:

– Each internal node has two children
– The children of a node are an ordered pair

(left child, right child)

• Recursive definition: a binary tree is 
– A single node is a binary tree
– Two binary trees connected by a root is a binary tree

• Applications:
– arithmetic expressions
– decision processes
– searching
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Arithmetic Expression Tree
• Binary tree associated with an arithmetic expression

– internal nodes: operators
– external nodes: operands

• Ex: arithmetic expression tree for expression  (2 ´ (a - 1) + (3 ´ b))
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Decision Tree
• Binary tree associated with a decision process

– internal nodes: questions with yes/no answer
– external nodes: decisions

• Ex: dining decision
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Want a fast meal?

How about coffee? On expense account?

Tree City Pizza Fire Taco Tantos Ray’s

Yes No

Yes No Yes No



Properties of Binary Trees
n number of nodes
e number of external nodes
i number of internal nodes
h height (max depth)
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Properties:
• e = i + 1
• n = 2e - 1
• h £ i
• h £ (n - 1)/2
• e £ 2h

• h ³ log2 e
• h ³ log2 (n + 1) - 1



Inorder Traversal of a Binary Tree

• inorder traversal: visit a node after its left subtree and before 
its right subtree
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Algorithm inOrder(v)
if isInternal (v)

inOrder (leftChild (v))
visit(v)
if isInternal (v)

inOrder (rightChild (v))

Ex: DBHEIAFCG

O(n)



Printing Arithmetic Expressions
• Specialization of an inorder traversal

– print operand/operator when visiting node
– print “(“ before visiting left
– print “)” before visiting right
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Algorithm printExpression(v)
if isInternal (v)

print(“(‘’)
inOrder (leftChild (v))

print(v.element ())
if isInternal (v)

inOrder (rightChild (v))
print (“)’’)

+

´´

-2

a 1

3 b

((2 ´ (a - 1)) + (3 ´ b))

O(n)



Euler Tour Traversal
• Generic traversal of a binary tree
• Includes preorder, postorder, and inorder traversals as special cases
• Walk around the tree and visit each node three times:

– on the left (preorder)   + ´ 2 – 5 1 ´ 3 2
– from below (inorder)  2 ´ 5 – 1 + 3 ´ 2
– on the right (postorder) 2 5 1 – ´ 3 2 ´ + 
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Linked Data Structure for 
Representing Trees

A node stores:
• element
• parent node
• sequence of children nodes
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Linked Data Structure for
Binary Trees

A node stores:
• element
• parent node
• left node
• right node
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Array-Based Representation of
Binary Trees

Nodes are stored in an array
• rank(root) = 1
• If rank(node) = i, then

rank(leftChild) = 2*i
rank(rightChild) = 2*i + 1
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rank:   1     2    3     4     5     6    7

Ex: ‘E’ is right child of D
rank(E) = 2 * rank(D) + 1

= 2 * 3 + 1
= 7

Ex: ‘A’ is left child of B
rank(A) = 2 * rank(B)

= 2 * 1 = 1


