Elementary Data Structures

Stacks & Queues Lists, Vectors, Sequences Amortized Analysis Trees

Stack ADT

- Container that stores arbitrary objects
- Insertions and deletions follow last-in first-out (LIFO) scheme
- Main operations
 - push(object): insert element
 - object pop(): remove and returns last element
- Auxiliary operations
 - object top(): returns last element without removing it
 - integer size(): returns number of elements stored
 - boolean isEmpty(): returns whether no elements are stored

push

top of stack

pop

Applications of Stacks

- Direct
 - Page visited history in a web browser
 - Undo sequence in a text editor
 - Chain of method calls in C++ runtime environment
- Indirect
 - Auxiliary data structure for algorithms
 - Component of other data structures

Array-based Stack

- Add elements from left to right in an array S of capacity N
- A variable *t* keeps track of the index of the top element
- Size is t+1

```
Algorithm push(o):
                                               Algorithm pop():
  if t = N-1 then
                                                 if isEmpty() then
     throw FullStackException
                                                    throw EmptyStackException
   else
                                                  else
     t \leftarrow t + 1
                                                   t \leftarrow t - 1
     S[t] \leftarrow o
                                                    return S[t+1]
                   O(1)
                                                                  O(1)
     S
                   2
                                                                  t
                                   Elementary Data Structures
                                                                                         4
```

Extendable Array-based Stack

- In a push operation, when the array is full, we can replace the array with a larger one instead of throwing an exception
 - Values in old array must be copied over to the new array
- How large should the new array be?
 - incremental strategy: increase the size by a constant c
 - doubling strategy: double the size A

IzeAlgorithm push(o)
if t = N-1 then $N^* = ?$ $A \leftarrow$ new array of size N^*
for $i \leftarrow 0$ to t do $A[i] \leftarrow O$ to t do $A[i] \leftarrow S[i]$
 $S \leftarrow A$
 $t \leftarrow t+1$
 $S[t] \leftarrow o$

Comparing the Strategies via Amortization

- Amortization: analysis tool to understand running times of algorithms that have steps with widely varying performance
- We compare incremental vs. doubling strategy by analyzing the total time *T*(*n*) needed to perform a series of *n* push operations
- We call amortized time of a push operation the average time taken by a push over a series of operations

- i.e., *T*(*n*) / *n*

• Assume we start with an empty stack represented by an empty array

Incremental Strategy

- We replace the array k = n/c times
- Total time *T*(*n*) of a series of *n* push operations is proportional to: *n* + *c* + 2*c* + 3*c* + 4*c* + ... + *kc* = *n* + *c*(1 + 2 + 3 + ... + *k*)
 = *n* + *ck*(*k* + 1)/2
- Since *c* is constant, T(n) is $O(n + k^2)$, which is $O(n^2)$
- The amortized time of a push operation is O(n)

Doubling Strategy

- We replace the array $k = \log_2 n$ times
- Total time T(n) of a series of n push operations is proportional to:

$$n + 1 + 2 + 4 + 8 + \dots + 2^{k}$$

= $n + 2^{k+1} - 1$
= $n + 2^{\log n + 1} - 1$
= $n + 2^{\log n} 2^{1} - 1$
= $n + 2n - 1$
= $3n - 1$

Recall the summation of this geometric series: $2^{0} + 2^{1} + 2^{k} + 1 = 1$

$$2^0 + 2^1 + \ldots + 2^k = 2^{k+1} - 1$$

- T(n) is O(n)
- The amortized time of a push operation is O(1)

Accounting Method Analysis

- The accounting method determines amortized running time using a scheme of credits and debits
- View computer as a coin-operated devices that needs \$1 (cyberdollar) for each primitive operation
 - Set up an amortization scheme for charging operations
 - Must always have enough money to pay for actual cost of operation
 - Total cost of the series of operations is no more than the total amount charged
- (amortized time) ≤ (total \$ charged) / (# operations)

Accounting Method Analysis: Doubling Strategy

- How much to charge for a push operation?
 - Charge \$1? No, not enough \$\$ to copy old elements
 - Charge \$2? No, not enough \$\$ to copy old elements
 - Charge \$3 for a push: use \$1 to pay for push, save \$2 to pay for copying all old elements into new array.

• Each push runs in O(1) amortized time; *n* pushes run in O(*n*) time.

Queue ADT

enqueue

end

- Container that stores arbitrary objects
- Insertions and deletions follow first-in first-out (FIFO) scheme
- Main operations
 - enqueue(object): insert element at end
 - object dequeue(): remove and returns front element
- Auxiliary operations
 - object front(): returns front element without removing it
 - integer size(): returns number of elements stored
 - boolean isEmpty(): returns whether no elements are stored

dequeue

front

Applications of Queues

- Direct
 - Waiting lines
 - Access to shared resources
 - Multiprogramming
- Indirect
 - Auxiliary data structure for algorithms
 - Component of other data structures

Singly Linked List

• A data structure consisting of a sequence of nodes

• Each node stores an element and a link to the next node

Queue with a Singly Linked List

- Singly Linked List implementation
 - front is stored at the first node
 - end is stored at the last node

• Space used is O(n) and each operation takes O(1) time

List ADT

- A collection of objects ordered with respect to their **position** (the node storing that element)
 - each object knows who comes before and after it
- Allows for insert/remove in the "middle"
- Query operations
 - isFirst(p), isLast(p)
- Accessor operations
 - first(), last()
 - before(p), after(p)

- Update operations
 - replaceElement(p, e)
 - swapElements(p, q)
 - insertBefore(p, e), insertAfter(p, e)
 - insertFirst(e), insertLast(e)
 - remove(p)

Doubly Linked List

- Provides a natural implementation of List ADT
- Nodes implement position and store
 - element
 - link to previous and next node
- Special head and tail nodes

Insertion: insertAfter(p, X)

Deletion: remove(*p*)

• We visualize remove(p), where p = last()

Vector ADT

- A linear sequence that supports access to its elements by their **rank** (number of elements preceding it)
- Main operations:
 - size()
 - isEmpty()
 - elemAtRank(r)
 - replaceAtRank(r, e)
 - insertAtRank(r, e)
 - removeAtRank(r)

Array-based Vector

- Use an array V of size N
- A variable *n* keeps track of the size of the vector (number of elements stored)
- *elemAtRank*(r) is implemented in O(1) time by returning V[r]

Insertion: insertAtRank(r, o)

- Need to make room for the new element by shifting forward the n r elements V[r], ..., V[n 1]
- In the worst case (r = 0), this takes O(n) time

• We could use an extendable array when more space is required

Deletion: removeAtRank(r)

- Need to fill the hole left by the removed element by shifting backward the n r 1 elements V[r + 1], ..., V[n 1]
- In the worst case (r = 0), this takes O(n) time

Sequence

- A generalized ADT that includes all methods from vector and list ADTs
- Provides access to its elements from both rank and position
- Can be implemented with an array or doubly linked list

Operation	Array	List
size, isEmpty	<i>O</i> (1)	<i>O</i> (1)
atRank, rankOf, elemAtRank	<i>O</i> (1)	O(n)
first, last, before, after	<i>O</i> (1)	<i>O</i> (1)
replaceElement, swapElements	<i>O</i> (1)	<i>O</i> (1)
replaceAtRank	<i>O</i> (1)	O(n)
insertAtRank, removeAtRank	O(n)	O(n)
insertFirst, insertLast	<i>O</i> (1)	<i>O</i> (1)
insertAfter, insertBefore	O(n)	O (1)
remove (at given position)	O(n)	<i>O</i> (1)

Tree

- Stores elements hierarchically
- Each node has a parent-child relation
- Direct applications:
 - Organizational charts
 - File systems
 - Programming environments

Tree ADT

The positions in a tree are its nodes.

- Accessor methods:
 - position root()
 - position parent(p)
 - PositionList children(p)
- Query methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)

- Generic methods:
 - integer size()
 - boolean isEmpty()
 - ObjectList elements()
 - PositionList positions()
 - swapElements(p, q)
 - object replaceElement(p, o)

Tree Traversal

A traversal visits the nodes of a tree in a systematic manner.

• preorder: a node is visited before its descendants

O(n) Algorithm preOrder(v) visit(v) for each child w of v preOrder (w)

preOrder(A) visits ABEFCGHID

B

E

F

• postorder: a node is visited after its descendants

postOrder(A) visits EFBGHICDA

С

Η

G

(Full) Binary Trees

D

- A binary tree is a tree with the following properties:
 - Each internal node has two children
 - The children of a node are an ordered pair (left child, right child)
- Recursive definition: a binary tree is
 - A single node is a binary tree
 - Two binary trees connected by a root is a binary tree
- Applications:
 - arithmetic expressions
 - decision processes
 - searching

F

E

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- Ex: arithmetic expression tree for expression $(2 \times (a 1) + (3 \times b))$

Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Ex: dining decision

Properties of Binary Trees

Properties:

- e = i + 1
- n = 2e 1
- $h \leq i$
- $h \le (n-1)/2$
- $e \leq 2^h$
- $h \ge \log_2 e$
- $h \ge \log_2(n+1) 1$

- *n* number of nodes
- *e* number of external nodes
- *i* number of internal nodes
- *h* height (max depth)

Inorder Traversal of a Binary Tree

• inorder traversal: visit a node after its left subtree and before its right subtree

Algorithm inOrder(v) if isInternal (v) inOrder (leftChild (v)) visit(v) if isInternal (v) inOrder (rightChild (v))

O(n)

Printing Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand/operator when visiting node
 - print "(" before visiting left
 - print ")" before visiting right

O(n) Algorithm printExpression(v) if isInternal (v) print("(") inOrder (leftChild (v)) print(v.element ()) if isInternal (v) inOrder (rightChild (v)) print (")")

 $((2 \times (a - 1)) + (3 \times b))$

Euler Tour Traversal

- Generic traversal of a binary tree
- Includes preorder, postorder, and inorder traversals as special cases
- Walk around the tree and visit each node three times: •
 - on the left (preorder) $+ \times 2 51 \times 32$
 - from below (inorder) $2 \times 5 1 + 3 \times 2$
 - on the right (postorder) $251 \times 32 \times +$

Linked Data Structure for Representing Trees

A node stores:

- element
- parent node
- sequence of children nodes

Linked Data Structure for Binary Trees

A node stores:

- element
- parent node
- left node

A

• right node

B

C

D

Array-Based Representation of Binary Trees

Nodes are stored in an array

- rank(root) = 1
- If rank(node) = i, then rank(leftChild) = 2*i rank(rightChild) = 2*i + 1

Ex: 'A' is left child of B rank(A) = 2 * rank(B)= 2 * 1 = 1

Ex: 'E' is right child of D
rank(E) =
$$2 * rank(D) + 1$$

= $2 * 3 + 1$
= 7