
Shortest Paths

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

Shortest Paths 2

Outline and Reading
• Weighted graphs (7.1)

– Shortest path problem
– Shortest path properties

• Dijkstra’s algorithm (7.1.1)
– Algorithm
– Edge relaxation

• The Bellman-Ford algorithm (7.1.2)
• Shortest paths in DAGs (7.1.3)
• All-pairs shortest paths (7.2.1)

Shortest Paths 3

Weighted Graphs
• In a weighted graph, each edge has an associated numerical value,

called the weight of the edge
• Edge weights may represent, distances, costs, etc.
• Example:

– In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

13871743

1843

1099
1120

1233
337

2555

142

1205

Shortest Paths 4

Shortest Path Problem
• Given a weighted graph and two vertices u and v, we want to find a path of

minimum total weight between u and v.
– Length of a path is the sum of the weights of its edges

• Example: shortest path between Providence and Honolulu
• Applications

– Internet packet routing
– Flight reservations
– Driving directions

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

13871743

1843

1099
1120

1233
337

2555

142

1205

Shortest Paths 5

Property 1. A subpath of a shortest path is itself a shortest path.

Property 2. There is a tree of shortest paths from a start vertex to all other vertices.
• Example: tree of shortest paths from Providence

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

13871743

1843

1099
1120

1233
337

2555

142

1205
Shortest Path Problem

Shortest Paths 6

Dijkstra�s Algorithm
The distance of vertex v from s is the length of a shortest path between s and v.

Dijkstra’s algorithm computes the distances of all the vertices from a given start
vertex s.
• Assumptions:

– the graph is connected
– the edges are undirected
– the edge weights are nonnegative

Idea:
• Grow a �cloud� of vertices, beginning with s and eventually covering all vertices
• Store with each vertex v a label d(v) representing the distance of v from s in the

subgraph consisting of the cloud and its adjacent vertices
• At each step

– Add to the cloud the vertex u outside the cloud with the smallest distance
label, d(u)

– Update the labels of the vertices adjacent to u

Shortest Paths 7

Edge Relaxation

Consider an edge e = (u,z) such that
• u is the vertex most recently added

to the cloud
• z is not in the cloud

The relaxation of edge e updates
distance d(z) as follows:

d(z) ¬ min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

10

zs
u

d(z) = 60
d(u) = 50

10

zs
u

e

e

Shortest Paths 8

Example

CB

A

E

D

F

0

428

¥ ¥

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Shortest Paths 9

Example (cont.)

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Shortest Paths 10

Dijkstra�s Algorithm
A priority queue stores the vertices
outside the cloud
• Key: distance
• Element: vertex

Locator-based methods
• insert(k,e) returns a locator
• replaceKey(l,k) changes the key of

an item

We store two labels with each
vertex:
• Distance (d(v) label)
• locator in priority queue

Algorithm DijkstraDistances(G, s)
Q ¬ new heap-based priority queue
for all v Î G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ¥)

l ¬ Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ¬ Q.removeMin()
for all e Î G.incidentEdges(u)

{ relax edge e }
z ¬ G.opposite(u,e)
r ¬ getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
Q.replaceKey(getLocator(z),r)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Shortest Paths 11

Analysis
• Graph operations

– Method incidentEdges is called once for each vertex

• Label operations
– We set/get the distance and locator labels of vertex z O(deg(z)) times
– Setting/getting a label takes O(1) time

• Priority queue operations
– Each vertex is inserted once into and removed once from the priority queue,

where each insertion or removal takes O(log n) time
– The key of a vertex in the priority queue is modified at most deg(w) times, where

each key change takes O(log n) time

• Dijkstra�s algorithm runs in O((n + m) log n) time provided the graph is represented
by the adjacency list structure
– Recall that Sv deg(v) = 2m

• The running time can also be expressed as O(m log n) since the graph is connected.

Shortest Paths 12

Extension
Using the template method pattern, we can
extend Dijkstra�s algorithm to return a tree
of shortest paths from the start vertex to all
other vertices

• Store with each vertex a third label:
– parent edge in the shortest path tree

• In the edge relaxation step, update the
parent label

Algorithm DijkstraShortestPathsTree(G, s)

…

for all v Î G.vertices()
…
setParent(v, Æ)
…

for all e Î G.incidentEdges(u)
{ relax edge e }
z ¬ G.opposite(u,e)
r ¬ getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Shortest Paths 13

Why Dijkstra’s Algorithm Works
Dijkstra’s algorithm is based on the greedy method. It adds vertices by increasing
distance.

Claim: Whenever a vertex u is pulled into the cloud, D[u] = d(v, u).

Outline of Proof (by contradiction):
• Suppose u is the first vertex such that D[u] > d(v, u).
• Let z be the first vertex on the shortest v-u path P which hasn’t been pulled into

the cloud yet, and let y be the vertex before z on P.
• Then, D[z] = d(v, z).
• Since z is on shortest v-u path, d(v, z) + d(z, u) = d(v, u).
• Since u is processed before z, D[u] ≤ D[z].

• D[u] ≤ D[z] = d(v, z) ≤ d(v, z) + d(z, u) = d(v, u), a contradiction.

Shortest Paths 14

Why It Doesn’t Work for
Negative-Weight Edges

CB

A

E

D

F

0

457

5 9

48

7 1

2 5

6

0 -8

C�s true distance is 1, but it is already
in the cloud with d(C)=5!

Dijkstra’s algorithm is based on the greedy method. It adds vertices by increasing
distance.

• If a node with a negative incident edge
were to be added late to the cloud, it could
mess up distances for vertices already in
the cloud.

• This violates the greedy property.

Shortest Paths 15

Bellman-Ford Algorithm
• Works even with negative-weight edges
• Must assume directed edges (otherwise we would have negative-weight cycles)
• Iteration i finds all shortest paths that use i edges beginning at s

• Running time: O(nm).

• Can be extended to detect a
negative-weight cycle if it exists
– How?

Algorithm BellmanFord(G, s)
for all v Î G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ¥)

for i ¬ 1 to n-1 do
for each (directed) edge e=(u,z) Î G.edges()

{ relax edge e }
r ¬ getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)

Shortest Paths 16

Bellman-Ford Example

¥¥

0

¥

¥

¥

48

7 1

-2 5

-2

3 9

Nodes are labeled with their d(v) values

¥

-2

¥

0

¥

¥

¥

48

7 1

-2 5
3 9

8 -2 4

-2

-28

0

4

¥

48

7 1

-2 5
3 9

¥

-15

6
1

9

0 4

-25

1

-1

9

8

7 1

-2 5

-2

3 9
4

Shortest Paths 17

DAG-based Algorithm

• Assumes G is a DAG
• Works even with negative-weight

edges
• Uses topological order
• Much faster than Dijkstra’s

algorithm

• Running time: O(n+m).

Algorithm DagDistances(G, s)
for all v Î G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ¥)

Perform a topological sort of the vertices
for u ¬ 1 to n do {in topological order}

for each edge e=(u,z) Î G.edges()
{ relax edge e }
r ¬ getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)

Shortest Paths 18

¥

-2

DAG Example

¥¥

0

¥

¥

¥

48

7 1

-5 5

-2

3 9

¥

0

¥

¥

¥

48

7 1

-5 5
3 9

Nodes are labeled with their d(v) values

-2

-28

0

4

¥

48

7 1

-5 5
3 9

¥

-2 4

-1

1 7

-25

0

1

-1

7

48

7 1

-5 5

-2

3 9 4

1

2 43

6 5

1

2 43

6 5

8

1

2 43

6 5

1

2 43

6 5

5

0

(two steps)

Shortest Paths 19

All-Pairs Shortest Paths
Find the distance between every
pair of vertices in a weighted
directed graph G.

• We can make n calls to
Dijkstra�s algorithm (if no
negative edges), which takes
O(nmlog n) time.

• Likewise, n calls to Bellman-
Ford would take O(n2m) time.

We can achieve O(n3) time using
the Floyd-Warshall dynamic
programming algorithm.

Algorithm AllPair(G) {assumes vertices 1,…,n}
for all vertex pairs (i,j)

if i = j
D0[i,i] ¬ 0

else if (i,j) is an edge in G
D0[i,j] ¬ weight of edge (i,j)

else
D0[i,j] ¬ + ¥

for k ¬ 1 to n do
for i ¬ 1 to n do

for j ¬ 1 to n do
Dk[i,j] ¬ min{ Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j] }

return Dn

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(compute weight of this edge)

