
Biconnectivity

SEA PVD

MIASNA

ORD
FCO

Biconnectivity 2

Outline and Reading
Definitions (6.3.2)
• Separation vertices and edges
• Biconnected graph
• Biconnected components
• Equivalence classes
• Linked edges and link components

Algorithms (6.3.2)
• Auxiliary graph
• Proxy graph

Biconnectivity 3

Separation Edges and Vertices
Let G be a connected graph

• A separation edge of G is an edge whose removal disconnects G.
Ex: (DFW,LAX) is a separation edge

• A separation vertex of G is a vertex whose removal disconnects G.
Ex: DFW, LGA and LAX are separation vertices

Applications:

• Separation edges and vertices represent single points of failure in a

network and are critical to the operation of the network.

ORD PVD

MIADFW

SFO

LAX

LGA

HNL

Biconnectivity 4

Biconnected Graph
Equivalent definitions of a biconnected graph G:
• Graph G has no separation edges and no separation vertices.
• For any two vertices u and v of G, there are two disjoint simple paths

between u and v (i.e., two simple paths between u and v that share no
other vertices or edges).

• For any two vertices u and v of G, there is a simple cycle containing u
and v.

Example:
ORD

PVD

MIADFW

SFO

LAX

LGA
HNL

5

Biconnected Components
• Biconnected component of a graph G

– A maximal biconnected subgraph of G, or
– A subgraph consisting of a separation edge of G and its end vertices

• Interaction of biconnected components
– An edge belongs to exactly one biconnected component
– A nonseparation vertex belongs to exactly one biconnected component
– A separation vertex belongs to two or more biconnected components

• Example of a graph with four biconnected components:

ORD PVD

MIADFW

SFO

LAX

LGA

HNL
RDU

Biconnectivity 6

Equivalence Classes
Given a set S, a relation R on S is a set of ordered pairs of elements of S, i.e., R is a
subset of S´S
• An equivalence relation R on S satisfies the following properties

Reflexive: R(x,x) is true for each x
Symmetric: R(x,y) = R(y,x) for each x,y
Transitive: R(x,y) Ù R(y,z) ⟶ R(x,z) for each x,y,z

• An equivalence relation R on S induces a partition of the elements of S into
equivalence classes

Example (connectivity relation among the vertices of a graph):
• Let V be the set of vertices of a graph G
• Define the relation

C = {(v,w) Î V´V such that G has a path from v to w}
• Relation C is an equivalence relation
• The equivalence classes of relation C are the vertices in each connected

component of graph G

Biconnectivity 7

Link Relation
Edges e and f of connected graph G are
linked if
• e = f, or
• G has a simple cycle containing e and f

Theorem: The link relation on the edges of a
graph is an equivalence relation.

Proof Sketch:
• The reflexive and symmetric properties

follow from the definition
• For the transitive property, consider two

simple cycles sharing an edge

a
b

g

c
j

d
e

f

i

Equivalence classes of linked edges:
{a} {b, c, d, e, f} {g, i, j}

a
b

g

c
j

d
e

f

i

Biconnectivity 8

Link Components
The link components of a connected graph G are the equivalence classes of edges
with respect to the link relation

A biconnected component of G is the subgraph of G induced by an equivalence
class of linked edges
• A separation edge is a single-element equivalence class of linked edges
• A separation vertex has incident edges in at least two distinct equivalence

classes of linked edge

ORD PVD

MIADFW

SFO

LAX

LGA

HNL
RDU

Biconnectivity 9

Auxiliary Graph
Auxiliary graph B for a connected graph G
• Associated with a DFS traversal of G
• The vertices of B are the edges of G
• For each back edge e of G, B has edges (e,f1), (e,f2) , …, (e,fk),

where f1, f2, …, fk are the discovery edges of G that form a simple cycle with e

The connected components of B correspond to the link components of G

Auxiliary graph B
a

d

b

c

e
h i

jf

g

a

b
g

c

j
d

e

f

i

DFS on graph G

h
i

Biconnectivity 10

Auxiliary Graph (cont.)
In the worst case, the number of edges of the auxiliary graph is
proportional to nm.

Auxiliary graph BDFS on graph G

An Algorithm to Compute
Biconnected Components

1. Perform DFS traversal on G
2. Compute auxiliary graph B
3. Compute connected components of B
4. For each connected component of B, output vertices of B (edges of G) as a

link component of G

Running time is O(nm). Why?
Can we do better?

Biconnectivity 11Auxiliary graph B
a

d

b

c

e
h i

jf

g

a

b
g

c

j
d

e

f

i

DFS on graph G

h
i

Biconnectivity 12

Proxy Graph
Algorithm proxyGraph(G)

Input connected graph G
Output proxy graph F for G
F ¬ empty graph
DFS(G, s) { s is any vertex of G}
for all discovery edges e of G

F.insertVertex(e)
setLabel(e, UNLINKED)

for all vertices v of G in DFS visit order
for all back edges e = (u,v)

F.insertVertex(e)
repeat {add edges to F only as necessary}

f ¬ discovery edge with dest. u
F.insertEdge(e,f,Æ)
if getLabel(f) = UNLINKED

setLabel(f, LINKED)
u ¬ origin of edge f

else
u ¬ v { ends the loop }

until u = v
return F

a

b
g

c

j
d

e

f

i

Proxy graph F

DFS on graph G

a

d

b

c

e
h i

jf

h

g

i

Biconnectivity 13

Proxy Graph (cont.)
Proxy graph F for a connected graph G
• Spanning forest of the auxiliary graph B
• Has m vertices and O(m) edges
• Can be constructed in O(n + m) time
• Its connected components (trees)

correspond to the link components of G

Given a graph G with n vertices and m
edges, we can compute the following in
O(n+m) time
• The biconnected components of G
• The separation vertices of G
• The separation edges of G

a

b
g

c

j
d

e

f

i

Proxy graph F

DFS on graph G

a

d

b

c

e
h i

jf

h

g

i

