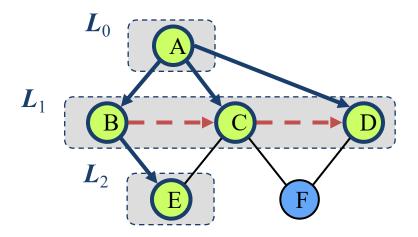
Breadth-First Search



Outline and Reading

Breadth-first search (6.3.3)

- Algorithm
- Example
- Properties
- Analysis
- Applications

DFS vs. BFS (6.3.3)

- Comparison of applications
- Comparison of edge labels

Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph. A BFS traversal of a graph G
 - visits all the vertices and edges of G
 - determines whether G is connected
 - computes the connected components of G
 - computes a spanning forest of G
- BFS on a graph with n vertices and m edges takes O(n + m) time
- BFS can be further extended to solve other graph problems
 - find and report a path with the minimum number of edges between two given vertices
 - find a simple cycle, if there is one

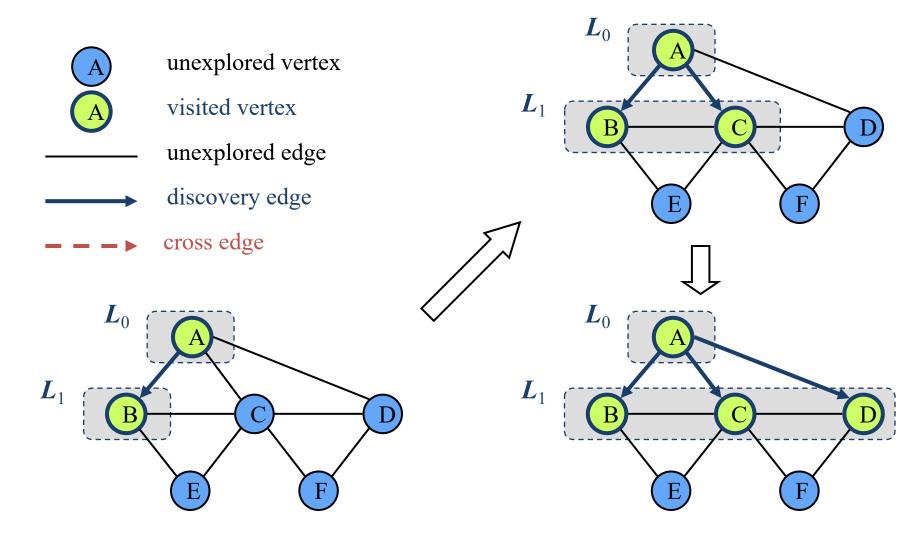
BFS Algorithm

The algorithm uses a mechanism for setting and getting "labels" of vertices and edges.

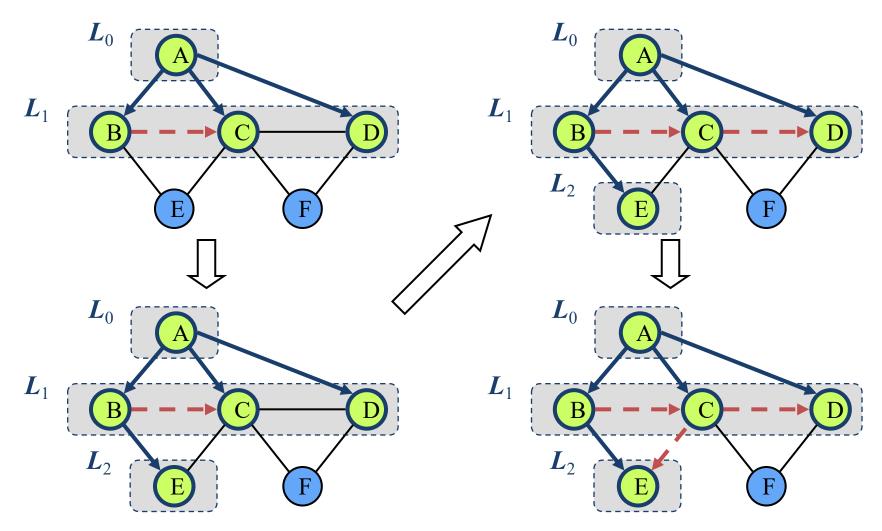
```
Algorithm BFS(G)
 Input graph G
 Output labeling of the edges
     and partition of the
     vertices of G
for all u \in G.vertices()
 setLabel(u, UNEXPLORED)
for all e \in G.edges()
 setLabel(e, UNEXPLORED)
for all v \in G.vertices()
 if getLabel(v) = UNEXPLORED
     BFS(G, v)
```

```
Algorithm BFS(G, s)
L_0 \leftarrow new empty sequence
L_0.insertLast(s)
setLabel(s, VISITED)
i \leftarrow 0
if \neg L_i is Empty()
   L_{i+1} \leftarrow new empty sequence
   for all v \in L_i elements()
      for all e \in G.incidentEdges(v)
        if getLabel(e) = UNEXPLORED
           w \leftarrow opposite(v,e)
           if getLabel(w) = UNEXPLORED
              setLabel(e, DISCOVERY)
              setLabel(w, VISITED)
              L_{i+1}.insertLast(w)
           else
              setLabel(e, CROSS)
   i \leftarrow i + 1
```

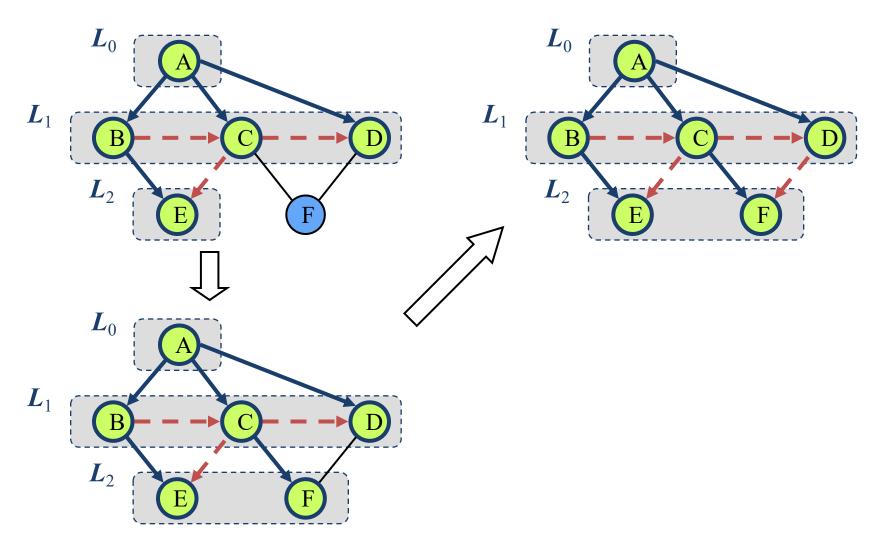
Example



Example (cont.)



Example (cont.)



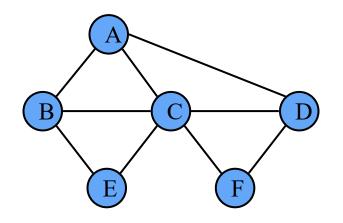
Properties

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s



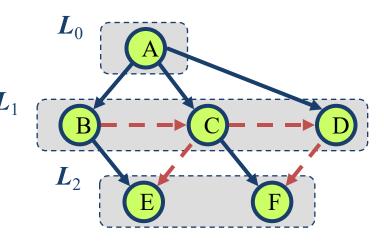
Property 2

The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges



Analysis

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\Sigma_v \deg(v) = 2m$

Applications

Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time:

- Compute the connected components of G
- Compute a spanning forest of **G**
- Find a simple cycle in G, or report that G is a forest
- Given two vertices of *G*, find a path in *G* between them with the minimum number of edges, or report that no such path exists

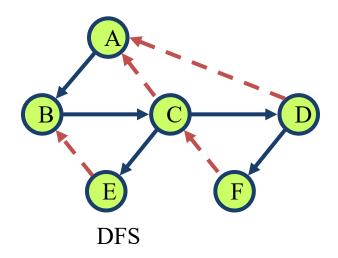
DFS vs. BFS

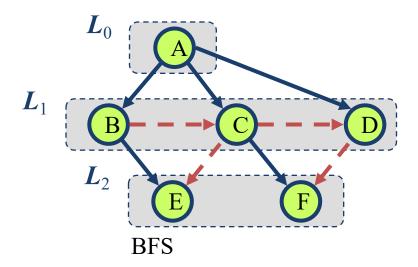
Back edge (v, w)

• w is an ancestor of v in the tree of discovery edges

Cross edge (v, w)

• w is in the same level as v or in the next level in the tree of discovery edges





DFS vs. BFS

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	√	~
Shortest paths		V
Biconnected components	√	

