Dynamic Programming

Outline and Reading

- Matrix Chain-Product (5.3.1)
- Dynamic Programming: The General Technique (5.3.2)
- 0-1 Knapsack Problem (5.3.3)

Matrix Chain Product

Dynamic Programming is a general algorithm design paradigm.

Rather than give the general structure, we first give a motivating ۲ example: Matrix Chain-Product

d

Review: Matrix Multiplication

- C = A * B
- A is $d \times e$ and B is $e \times f$ •

$$C[i, j] = \sum_{k=0}^{e-1} A[i, k] * B[k, j]$$

 $O(d \cdot e \cdot f)$ time

Matrix Chain Product

Matrix Chain-Product:

- Compute $A = A_0 * A_1 * \dots * A_{n-1}$
- A_i is $d_i \times d_{i+1}$
- **Problem**: How to parenthesize in such a way that **minimizes** the total number of scalar multiplications?

Example:

- B is 3×100
- C is 100×5
- D is 5×5
- (B*C)*D takes 1500 + 75 = 1575 ops
- $B^{*}(C^{*}D)$ takes 1500 + 2500 = 4000 ops

One Approach: Brute Force

- Try all possible ways to parenthesize $A = A_0 * A_1 * ... * A_{n-1}$
- Calculate number of operations for each one
- Pick the one that is best

Running time:

- The number of parenthesizations is equal to the number of binary trees with *n* nodes
 - This is exponential!
 - It is called the Catalan number, and it is almost 4ⁿ.
- This is a terrible algorithm.

Another Approach: Greedy (v1)

Idea: Repeatedly select the product that uses (up) the most operations.

Counter-example:

- A is 10×5
- B is 5×10
- C is 10×5
- D is 5×10

This greedy approach gives (A*B)*(C*D)

• takes 500+1000+500 = 2000 ops

A better solution: $A^{*}((B^{*}C)^{*}D)$

• takes 500+250+250 = 1000 ops

Another Approach: Greedy (v2)

Idea: Repeatedly select the product that uses the fewest operations.

Counter-example:

- A is 101×11
- B is 11×9
- C is 9×100
- D is 100×99

This greedy approach gives A*((B*C)*D))

• takes 109989+9900+108900=228789 ops

A better solution is (A*B)*(C*D)

• takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the optimal value.

"Recursive" Approach

Define subproblems:

- Find the best parenthesization of $A_i^*A_{i+1}^*...^*A_j$.
- Let $N_{i,j}$ denote the number of operations done by this subproblem.
- The optimal solution for the whole problem is $N_{0,n-1}$.

Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems

- There has to be a final multiplication (root of the expression tree) for the optimal solution.
- Say, the final multiply is at index i: $(A_0^* \dots^* A_i)^* (A_{i+1}^* \dots^* A_{n-1})$.
- Then the optimal solution $N_{0,n-1}$ is the sum of two optimal subproblems, $N_{0,i}$ and $N_{i+1,n-1}$ plus the time for the last multiply.
- If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Consider all possible places for that final multiply:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for $N_{i,j}$ is the following:

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

• Note that subproblems are not independent – meaning subproblems overlap.

Dynamic Programming Algorithm Visualization

The bottom-up construction fills in $N_{i,j} = \min_{i \le k < j} \{N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}$ the N array by diagonals

 $N_{i,j}$ gets values from previous entries in i-th row and j-th column

Filling in each entry in the N table takes O(n) time.

• Total run time: $O(n^3)$

Getting actual parenthesization can be done by remembering "k" for each N entry in a separate table

Dynamic Programming Algorithm

Since subproblems overlap, we don't use recursion.

Instead, we construct optimal subproblems "bottom-up."

 $N_{i,i}$'s are easy, so start with them

Then do problems of "length" 2,3,... subproblems, and so on.

Running time: $O(n^3)$

Algorithm *matrixChain(S)*: **Input:** sequence *S* of *n* matrices to be multiplied **Output:** number of operations in an optimal parenthesization of *S* for $i \leftarrow 0$ to n - 1 do $N_{i,i} \leftarrow \mathbf{0}$ for *length* \leftarrow 1 to *n* – 1 do { length = j - i is the length of the chain } for $i \leftarrow 0$ to n - 1 - length do $j \leftarrow i + length$ $N_{i,i} \leftarrow +\infty$ for $k \leftarrow i$ to j - 1 do $N_{i,i} \leftarrow \min\{N_{i,i}, N_{i,k} + N_{k+1,i} + d_i d_{k+1} d_{i+1}\}$ record k that produces minimum $N_{i,i}$ return $N_{0,n-1}$

number of scalar operations required to multiply $A_i \cdot A_{i+1} \cdot A_{i+2} \cdot \ldots \cdot A_{j-1} \cdot A_j$

matrix index where final multiplication occurred to obtain optimal solution given in N[i][j]

number of scalar operations required to multiply $A_i \cdot A_{i+1} \cdot A_{i+2} \cdot \ldots \cdot A_{j-1} \cdot A_j$ $A_0 \cdot A_1$ N[0][1] = 0 + 0 + 30*35*15 = 15750 matrix index where final multiplication occurred to obtain optimal solution given in N[i][j]

Ċ	lir	ma nen	atrix sion	$A = \frac{A}{30}$	k35 d	A_1 35x1:	$5 d_2$	A ₂ 15x5	d_3	A ₃ 5x1	$\overset{ }{\overset{ }}{\overset{ }}{}}{}{}}{}}{}}{}}{}}{}}{}}{}}{}}{$	4	A ₄ 10x20	$^{0}d_{5}$	20	A ₅)x25	d_6
	r				Unc	* []				I							
		Ν	0	1	2	3	4	5			k	0	1	2	3	4	5
	\square	0	0	15750							0		0				
		1		0	2625						1			1			
start		2			0						2						
l		3				0					3						
		4					0				4						
		5						0			5						

 number of scalar operations required to multiply
 matrix

 $A_i \cdot A_{i+1} \cdot A_{i+2} \cdot \ldots \cdot A_{j-1} \cdot A_j$ multiply

 $A_0 \cdot A_1$ N[0][1] = 0 + 0 + 30*35*15 = 15750

 $A_1 \cdot A_2$ N[1][2] = 0 + 0 + 35*15*5 = 2626

matrix index where final multiplication occurred to obtain optimal solution given in N[i][j]

di	ma men	atrix sion	A = A = 30	d_{10}	A_1 35x1:	$5 d_2$	A ₂ 15x5	d_3	A ₃ 5x1	$\frac{1}{d}$,] ,	A_4 0x20	d_5	20	A ₅)x25	l_6
		[end	l j			٦								
	N	0	1	2	3	4	5			k	0	1	2	3	4	5
Γ	0	0	15750							0		0				
	1		0	2625						1			1			
start	2			0	750					2				2		
	3				0					3						
	4					0				4						
	5						0			5						

matrix index where final multiplication occurred to obtain optimal solution given in N[i][j]

number of scalar operations required to multiply $A_i \cdot A_{i+1} \cdot A_{i+2} \cdot \ldots \cdot A_{j-1} \cdot A_j$ $A_0 \cdot A_1$ N[0][1] = 0 + 0 + 30*35*15 = 15750 $A_1 \cdot A_2$ N[1][2] = 0 + 0 + 35*15*5 = 2626 $A_2 \cdot A_3$ N[2][3] = 0 + 0 + 15*5*10 = 750

d	m limer	atrix nsion	$\begin{array}{ccc} x & A \\ x & 30 \\ d_0 \end{array}$	l ₀ x35 d	A_1 35x1:	$5 \qquad 1 \\ d_2$	A ₂ 5x5	d_{2}	<i>A</i> ₃ 5x1	0		A ₄ 10x20	d_{5}	20	A_5)x25	d_{c}
			~0	enc	1 1 <i>j</i>	ω2		~3			·4		~.)			~0
	N	0	1	2	3	4	5			k	0	1	2	3	4	5
	0	0	15750							0		0				
	1		0	2625						1			1			
start	2			0	750					2				2		
l	3				0	1000				3					3	
	4					0				4						
	5						0			5						

matrix index where finalmultiplication occurred to obtainoptimal solution given in N[i][j]

number of scalar operations required to multiply $A_i \cdot A_{i+1} \cdot A_{i+2} \cdot \ldots \cdot A_{j-1} \cdot A_j$ $A_0 \cdot A_1$ N[0][1] = 0 + 0 + 30*35*15 = 15750 $A_1 \cdot A_2$ N[1][2] = 0 + 0 + 35*15*5 = 2626 $A_2 \cdot A_3$ N[2][3] = 0 + 0 + 15*5*10 = 750 $A_3 \cdot A_4$ N[3][4] = 0 + 0 + 5*10*20 = 1000

d	ma imen	atrix sion	d_0	l ₀ x35 d	$\begin{array}{c} A_1 \\ 35 x 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{ccc} 5 & 1 \\ d_2 \end{array}$	A_2 $5x5$ d_3	A; 5x1	0 d	l_4	A ₄ 10x2	$\frac{1}{0}d_5$	20	A ₅)x25	d_6
					*			-							_
	N	0	1	2	3	4	5		k	0	1	2	3	4	5
	0	0	15750						0		0				
	1		0	2625				1	1			1			
start	2			0	750				2				2		
l	3				0	1000			3					3	
	4					0	5000		4						4
	5						0	1	5						

matrix index where final multiplication occurred to obtain optimal solution given in N[i][j]

number of scalar operations required to multiply $A_i \cdot A_{i+1} \cdot A_{i+2} \cdot \ldots \cdot A_{j-1} \cdot A_j$ $A_0 \cdot A_1$ N[0][1] = 0 + 0 + 30*35*15 = 15750 $A_1 \cdot A_2$ N[1][2] = 0 + 0 + 35*15*5 = 2626 $A_2 \cdot A_3$ N[2][3] = 0 + 0 + 15*5*10 = 750 $A_3 \cdot A_4$ N[3][4] = 0 + 0 + 5*10*20 = 1000 $A_4 \cdot A_5$ N[4][5] = 0 + 0 + 10*20*25 = 5000

di	ma men	atrix sion	: A : 30x	40 x35	A ₁ 35x1:	5	A2 15x5		A ₃ 5x1	0	. 1	A_4 0x20)	20	A ₅)x25	
			d_0	dj end	1 j	d_2		d_3		d	4		d_5		(<i>d</i> ₆
	N	0	1	2	3	4	5			k	0	1	2	3	4	5
	0	0	15750	7875						0		0	0			
	1		0	2625						1			1			
start	2			0	750					2				2		
l	3				0	1000				3					3	
	4					0	500	00		4						4
	5						0			5						

$$(A_0) \cdot (A_1 \cdot A_2) = 0 + 2625 + 30*35*5 = 7875$$

$$(A_0 \cdot A_1) \cdot (A_2) = 15750 + 0 + 30*15*5 = 18000$$

di	ma men	atrix sion	: A : 30x	40 x35	A ₁ 35x13	5	A ₂ 15x5	_	A ₃ 5x1	0	1	A_4 0x20)	20	A ₅)x25	_
			d_0	d_1 end	1 I _J j	d_2		d_3		d	4		d_5		(d_6
	N	0	1	2	3	4	5	Ì		k	0	1	2	3	4	5
Γ	0	0	15750	7875						0		0	0			
	1		0	2625	4375					1			1	2		
start	2			0	750					2				2		
l	3				0	1000				3					3	
	4					0	500	00		4						4
	5						0			5						

$$(A_1) \cdot (A_2 \cdot A_3) = 0 + 750 + 35*15*10 = 6000$$

 $(A_1 \cdot A_2) \cdot (A_3) = 2625 + 0 + 35*5*10 = 4375$

di	ma men	atrix sion	A = A = 30	0 35 d	A ₁ 35x15	5 da	A ₂ 15x5	da	A ₃ 5x1	0	1	A ₄ 0x20) d-	20	A ₅)x25	1.
			<i>u</i> ₀	end	l j	u_2					4		<i>u</i> ₅			<i>r</i> e
	Ν	0	1	2	3	4	5			k	0	1	2	3	4	5
	0	0	15750	7875						0		0	0			
	1		0	2625	4375					1			1	2		
start	2			0	750	2500				2				2	2	
l	3				0	1000				3					3	
	4					0	500	0		4						4
	5						0			5						

$$(A_2) \cdot (A_3 \cdot A_4) = 0 + 1000 + 15*5*20 = 2500$$

 $(A_2 \cdot A_3) \cdot (A_4) = 750 + 0 + 15*10*20 = 3750$

di	ma men	atrix sion	A = A = 30x	40 x35	<i>A</i> ₁ 35x1:	5	A ₂ 15x5	A ₃ 5x1	0	, 1	A ₄ 0x20)	20	A ₅)x25	.1
			a_0		1 j	a_2			<i>a</i>	4		a_5		(<i>l</i> ₆
	N	0	1	2	3	4	5		k	0	1	2	3	4	5
Γ	0	0	15750	7875					0		0	0			
	1		0	2625	4375				1			1	2		
start	2			0	750	2500			2				2	2	
l	3				0	1000	3500		3					3	4
	4					0	5000		4						4
	5						0		5						

$$(A_3) \cdot (A_4 \cdot A_5) = 0 + 5000 + 5*10*25 = 6250$$

 $(A_3 \cdot A_4) \cdot (A_5) = 1000 + 0 + 5*20*25 = 3500$

di	ma men	atrix sion	: A : 30x	40 x35	A ₁ 35x1:	5	A ₂ 15x5	A ₃ 5x1	0	1	A_4 0x20)	20	A ₅)x25	_
			d_0	d_1 end	l j	d_2	<i>d</i> ₃		d	4		d_5		C	t_6
	N	0	1	2	3	4	5		k	0	1	2	3	4	5
	0	0	15750	7875	9375				0		0	0	2		
	1		0	2625	4375				1			1	2		
start	2			0	750	2500			2				2	2	
l	3				0	1000	3500		3					3	4
	4					0	5000		4						4
	5						0		5						

$$(A_0) \cdot (A_1 \cdot A_2 \cdot A_3) = 0 + 4375 + 30*35*10 = 14875$$

$$(A_0 \cdot A_1) \cdot (A_2 \cdot A_3) = 15750 + 750 + 30*15*10 = 21000$$

$$(A_0 \cdot A_1 \cdot A_2) \cdot (A_3) = 7875 + 0 + 30*5*10 = 9375$$

di	ma men	atrix sion	$A = \frac{A}{30}$	40 x35	<i>A</i> ₁ 35x13	5 1	A ₂ .5x5	<i>A</i> 3 5x1	0	, 1	A ₄ 0x20) d	20	A ₅)x25	J
			u_0	end	l <i>j</i>	a_2				4		u_5			<i>u</i> ₆
	N	0	1	2	3	4	5		k	0	1	2	3	4	5
Γ	0	0	15750	7875	9375				0		0	0	2		
	1		0	2625	4375	7125			1			1	2	2	
start	2			0	750	2500			2				2	2	
l	3				0	1000	3500		3					3	4
	4					0	5000		4						4
	5						0		5						

$$(A_1) \cdot (A_2 \cdot A_3 \cdot A_4) = 0 + 2500 + 35*15*20 = 13000$$

$$(A_1 \cdot A_2) \cdot (A_3 \cdot A_4) = 2625 + 1000 + 35*5*20 = 7125$$

$$(A_1 \cdot A_2 \cdot A_3) \cdot (A_4) = 4375 + 0 + 35*10*20 = 11375$$

di	ma men	atrix sion	A = A = A	40 x35	<i>A</i> ₁ 35x1:	5	A ₂ 15x5	d	A ₃ 5x1	0	1	A ₄ 0x20) d	20	A ₅)x25	4
			u_0	end	1 I _J j	u_2		<i>u</i> 3		a	4		u_5		(<i>u</i> ₆
	N	0	1	2	3	4	5			k	0	1	2	3	4	5
	0	0	15750	7875	9375					0		0	0	2		
	1		0	2625	4375	7125				1			1	2	2	
start	2			0	750	2500	5375	5		2				2	2	2
l	3				0	1000	3500)		3					3	4
	4					0	5000)		4						4
	5						0			5						

$$(A_2) \cdot (A_3 \cdot A_4 \cdot A_5) = 0 + 3500 + 15*5*25 = 5375$$

$$(A_2 \cdot A_3) \cdot (A_4 \cdot A_5) = 750 + 5000 + 15*10*25 = 9500$$

$$(A_2 \cdot A_3 \cdot A_4) \cdot (A_5) = 2500 + 0 + 15*20*25 = 10000$$

	ma	atrix	: A	-0	A_1		A_2	A_3			A_4			A_5	
di	men	sion	: 303	x35	35x1:	5 1	5x5	5x1	0	1	0x20)	20)x25	,
			a_0	a_1	[a_2	a_3		a	4		a_5		0	ι_6
				end	Ĵ										
	N	0	1	2	3	4	5		k	0	1	2	3	4	5
	0	0	15750	7875	9375	11875			0		0	0	2	2	
	1		0	2625	4375	7125			1			1	2	2	
start	2			0	750	2500	5375		2				2	2	2
l	3				0	1000	3500		3					3	4
	4					0	5000		4						4
	5						0		5						

$$(A_0) \cdot (A_1 \cdot A_2 \cdot A_3 \cdot A_4) = 0 + 7125 + 30*35*20 = 28125$$

$$(A_0 \cdot A_1) \cdot (A_2 \cdot A_3 \cdot A_4) = 15750 + 2500 + 30*15*20 = 27250$$

$$(A_0 \cdot A_1 \cdot A_2) \cdot (A_3 \cdot A_4) = 7875 + 1000 + 30*5*20 = 11875$$

$$(A_0 \cdot A_1 \cdot A_2 \cdot A_3) \cdot (A_4) = 9375 + 0 + 30*10*20 = 15375$$

matrix:		A_0		A_1		A_2	A_3	3		A_4		A_5			
dimension:		: 30x35		35x15 1:		$5x5 \qquad 5x5$		0 - 10		0x20	20 - 20		0x25		
a_0					1	u_3	a_4			u_5 u_6			<i>L</i> 6		
start i	N	0	1	2	3	4	5		k	0	1	2	3	4	5
	0	0	15750	7875	9375	11875			0		0	0	2	2	
	1		0	2625	4375	7125	10500		1			1	2	2	2
	2			0	750	2500	5375		2				2	2	2
	3				0	1000	3500		3					3	4
	4					0	5000		4						4
	5						0		5						

$$(A_1) \cdot (A_2 \cdot A_3 \cdot A_4 \cdot A_5) = 0 + 5375 + 35*15*25 = 18500 (A_1 \cdot A_2) \cdot (A_3 \cdot A_4 \cdot A_5) = 2625 + 3500 + 35*5*25 = 10500 (A_1 \cdot A_2 \cdot A_3) \cdot (A_4 \cdot A_5) = 4375 + 5000 + 35*10*25 = 18125 (A_1 \cdot A_2 \cdot A_3 \cdot A_4) \cdot (A_5) = 7125 + 0 + 35*20*25 = 24625$$

matrix:		: A	A_0		A_1 .		A_3	l ₃		A_4		A_5			
dimension:			d_{0}	d_0 d_1		$\frac{35 \times 15}{d_{2}}$		5x1	$\begin{array}{ccc} 10 & 1 \\ d_{A} \end{array}$		d_{r}		20x25		d_c
end_j									u	4		ag		, i	~0
	N	0	1	2	3	4	5		k	0	1	2	3	4	5
start i	0	0	15750	7875	9375	11875	15125		0		0	0	2	2	2
	1		0	2625	4375	7125	10500		1			1	2	2	2
	2			0	750	2500	5375		2				2	2	2
	3				0	1000	3500		3					3	4
	4					0	5000		4						4
	5						0		5						

 $(A_0) \cdot (A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5) = 0 + 10500 + 30*35*25 = 36750$ $(A_0 \cdot A_1) \cdot (A_2 \cdot A_3 \cdot A_4 \cdot A_5) = 15750 + 5375 + 30*15*25 = 32375$ $(A_0 \cdot A_1 \cdot A_2) \cdot (A_3 \cdot A_4 \cdot A_5) = 7875 + 3500 + 30*5*25 = 15125$ $(A_0 \cdot A_1 \cdot A_2 \cdot A_3) \cdot (A_4 \cdot A_5) = 9375 + 5000 + 30*10*25 = 21875$ $(A_0 \cdot A_1 \cdot A_2 \cdot A_3 \cdot A_4) \cdot (A_5) = 11875 + 0 + 30*20*25 = 26875$

matrix: dimension:		A : A	A_0 30x35		A_1		A_3 5x1	4 ₃ x10		A_4 10x20		A_5 20x25			
			d_0	$d_0 \qquad d_1 \\ end j$			d_2 d_3		d_4			d_5		d_6	
start i	N	0	1	2	3	4	5		k	0	1	2	3	4	5
	0	0	15750	7875	9375	11875	15125		0		0	0	2	2	2
	1		0	2625	4375	7125	10500		1			1	2	2	2
	2			0	750	2500	5375		2				2	2	2
	3				0	1000	3500		3					3	4
	4					0	5000		4						4
	5						0		5						

optimal order in which the following matrices should be multiplied:

 $[(A_0) \cdot (A_1 \cdot A_2)] \cdot [(A_3 \cdot A_4) \cdot (A_5)]$

General Dynamic Programming Technique

Applies to an optimization problem that at first seems to require a lot of time (possibly exponential), provided we have:

- Simple subproblems: the subproblems can be defined in terms of a few variables, such as *j*, *k*, *l*, *m*, and so on.
- Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).
- Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems

0/1 Knapsack Problem

Given: A set S of n items, with each item i having

- w_i a positive weight
- b_i a positive benefit

<u>Goal</u>: Choose items with maximum total benefit but with weight at most W.

If we are not allowed to take fractional amounts, then this is the 0/1 knapsack problem.

- In this case, we let *T* denote the set of items we take
- Objective: maximize

• Constraint:

 $\sum W_i \leq W$ $i \in T$

Example

- <u>Given</u>: A set S of n items, with each item i having
 - b_i a positive "benefit"
 - w_i a positive "weight"
- <u>Goal</u>: Choose items with maximum total benefit but with weight at most W.

- item 5 (\$80, 2 in)
- item 3 (\$6, 2in)
- item 1 (\$20, 4in)

A 0/1 Knapsack Algorithm: First Attempt

 S_k : Set of items numbered 1 to k.

- <u>Idea</u>: Define B[k] = best selection from S_k .
- Problem: does not have subproblem optimality.
 - Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of (benefit, weight) pairs and total weight W = 20

A 0/1 Knapsack Algorithm: Second Attempt

 S_k : Set of items numbered 1 to k.

- <u>Idea</u>: Define B[k,w] to be the best selection from S_k with weight at most w
- Good news: this does have subproblem optimality.

$$B[k,w] = \begin{cases} B[k-1,w] & \text{if } w_k > w \\ \max\{B[k-1,w], B[k-1,w-w_k] + b_k\} & \text{else} \end{cases}$$

That is, the best subset of S_k with weight at most w is either

- the best subset of S_{k-1} with weight at most w or
- the best subset of S_{k-1} with weight at most w-w_k plus item k

O/1 Knapsack Algorithm $B[k,w] = \begin{cases} B[k-1,w] & \text{if } w_k > w \\ \max\{B[k-1,w], B[k-1,w-w_k] + b_k\} & \text{else} \end{cases}$

- Recall the definition of B[k,w]
- Since B[k,w] is defined in terms of B[k–1,*], we can use two arrays of instead of a matrix
- Running time: O(nW).
- Not a polynomial-time algorithm since W may be large
- This is a pseudo-polynomial time algorithm

Algorithm *01Knapsack(S, W)*:

Input: set **S** of **n** items with benefit b_i and weight w_i ; maximum weight WOutput: benefit of best subset of *S* with weight at most Wlet A and B be arrays of length W + 1for $w \leftarrow 0$ to W do $B[w] \leftarrow 0$ for $k \leftarrow 1$ to *n* do copy array **B** into array A for $w \leftarrow w_k$ to W do if $A[w-w_k] + b_k > A[w]$ then $B[w] \leftarrow A[w - w_k] + b_k$ return **B**[W]