
Dynamic Programming

Outline and Reading
• Matrix Chain-Product (5.3.1)
• Dynamic Programming: The General Technique (5.3.2)
• 0-1 Knapsack Problem (5.3.3)

Dynamic Programming 2

Matrix Chain Product
Dynamic Programming is a general algorithm design paradigm.
• Rather than give the general structure, we first give a motivating

example: Matrix Chain-Product

Review: Matrix Multiplication
• C = A*B
• A is d × e and B is e × f

• O(d×e×f) time

Dynamic Programming 3

å
-

=

=
1

0
],[*],[],[

e

k
jkBkiAjiC

A C

B

d d

f

e

f

e

i

j

i,j

Matrix Chain Product
Matrix Chain-Product:
• Compute A=A0*A1*…*An-1
• Ai is di×di+1
• Problem: How to parenthesize in such a way that minimizes the

total number of scalar multiplications?

Example:
• B is 3×100
• C is 100×5
• D is 5×5
• (B*C)*D takes 1500 + 75 = 1575 ops
• B*(C*D) takes 1500 + 2500 = 4000 ops

Dynamic Programming 4

One Approach: Brute Force
• Try all possible ways to parenthesize A=A0*A1*…*An-1

• Calculate number of operations for each one

• Pick the one that is best

Running time:

• The number of parenthesizations is equal to the number of binary trees

with n nodes

– This is exponential!

– It is called the Catalan number, and it is almost 4n.

• This is a terrible algorithm.

Dynamic Programming 5

Another Approach: Greedy (v1)
Idea: Repeatedly select the product that uses (up) the most operations.

Counter-example:
• A is 10×5
• B is 5×10
• C is 10×5
• D is 5×10
This greedy approach gives (A*B)*(C*D)
• takes 500+1000+500 = 2000 ops

A better solution: A*((B*C)*D)
• takes 500+250+250 = 1000 ops

Dynamic Programming 6

Another Approach: Greedy (v2)
Idea: Repeatedly select the product that uses the fewest operations.

Counter-example:
• A is 101×11
• B is 11×9
• C is 9×100
• D is 100×99
This greedy approach gives A*((B*C)*D))
• takes 109989+9900+108900=228789 ops

A better solution is (A*B)*(C*D)
• takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the optimal value.
7

“Recursive” Approach
Define subproblems:
• Find the best parenthesization of Ai*Ai+1*…*Aj.
• Let Ni,j denote the number of operations done by this subproblem.
• The optimal solution for the whole problem is N0,n-1.

Subproblem optimality: The optimal solution can be defined in terms
of optimal subproblems
• There has to be a final multiplication (root of the expression tree) for

the optimal solution.
• Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1).
• Then the optimal solution N0,n-1 is the sum of two optimal

subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply.
• If the global optimum did not have these optimal subproblems, we

could define an even better �optimal� solution.

Dynamic Programming 8

Characterizing Equation
• The global optimal has to be defined in terms of optimal subproblems,

depending on where the final multiply is at.

• Consider all possible places for that final multiply:
– Recall that Ai is a di × di+1 dimensional matrix.
– So, a characterizing equation for Ni,j is the following:

• Note that subproblems are not independent – meaning subproblems
overlap.

Dynamic Programming 9

}{min 11,1,, +++<£
++= jkijkkijkiji dddNNN

Dynamic Programming
Algorithm Visualization

The bottom-up construction fills in
the N array by diagonals

Ni,j gets values from previous
entries in i-th row and j-th column

Filling in each entry in the N table
takes O(n) time.
• Total run time: O(n3)

Getting actual parenthesization can
be done by remembering �k� for
each N entry in a separate table

Dynamic Programming 10

}{min 11,1,, +++<£
++= jkijkkijkiji dddNNN

answer

N 0 1

0
1

2 …

n-1

…

n-1j

i

i

j

Dynamic Programming Algorithm
Since subproblems
overlap, we don’t use
recursion.

Instead, we construct
optimal subproblems
�bottom-up.�

Ni,i�s are easy, so start
with them

Then do problems of
�length� 2,3,…
subproblems, and so on.

Running time: O(n3)
11

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied
Output: number of operations in an optimal

parenthesization of S
for i ¬ 0 to n - 1 do

Ni,i ¬ 0
for length ¬ 1 to n - 1 do

{ length= j - i is the length of the chain }
for i ¬ 0 to n – 1 - length do

j ¬ i + length
Ni,j ¬ +¥
for k ¬ i to j - 1 do

Ni,j ¬ min{Ni,j, Ni,k + Nk+1,j + di dk+1 dj+1}
record k that produces minimum Ni,j

return N0,n-1

Dynamic Programming 12

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

13

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5
0 0
1 0
2 0
3 0
4 0
5 0

k 0 1 2 3 4 5
0
1
2
3
4
5

number of scalar operations required to multiply

start
i

end j

matrix index where final
multiplication occurred to obtain
optimal solution given in N[i][j]

14

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5
0 0 15750
1 0
2 0
3 0
4 0
5 0

k 0 1 2 3 4 5
0 0
1
2
3
4
5

start

end

i

j

number of scalar operations required to multiply matrix index where final
multiplication occurred to obtain
optimal solution given in N[i][j]N[0][1] = 0 + 0 + 30*35*15 = 15750

15

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5

0 0 15750

1 0 2625

2 0

3 0

4 0

5 0

k 0 1 2 3 4 5

0 0

1 1

2

3

4

5

start

end

i

j

number of scalar operations required to multiply matrix index where final
multiplication occurred to obtain
optimal solution given in N[i][j]

N[0][1] = 0 + 0 + 30*35*15 = 15750
N[1][2] = 0 + 0 + 35*15*5 = 2626

16

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5

0 0 15750

1 0 2625

2 0 750

3 0

4 0

5 0

k 0 1 2 3 4 5

0 0

1 1

2 2

3

4

5

start

end

i

j

number of scalar operations required to multiply matrix index where final
multiplication occurred to obtain
optimal solution given in N[i][j]

N[0][1] = 0 + 0 + 30*35*15 = 15750
N[1][2] = 0 + 0 + 35*15*5 = 2626
N[2][3] = 0 + 0 + 15*5*10 = 750

17

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5

0 0 15750

1 0 2625

2 0 750

3 0 1000

4 0

5 0

k 0 1 2 3 4 5

0 0

1 1

2 2

3 3

4

5

start

end

i

j

number of scalar operations required to multiply matrix index where final
multiplication occurred to obtain
optimal solution given in N[i][j]

N[0][1] = 0 + 0 + 30*35*15 = 15750
N[1][2] = 0 + 0 + 35*15*5 = 2626
N[2][3] = 0 + 0 + 15*5*10 = 750
N[3][4] = 0 + 0 + 5*10*20 = 1000

18

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5

0 0 15750

1 0 2625

2 0 750

3 0 1000

4 0 5000

5 0

k 0 1 2 3 4 5

0 0

1 1

2 2

3 3

4 4

5

start

end

i

j

number of scalar operations required to multiply matrix index where final
multiplication occurred to obtain
optimal solution given in N[i][j]

N[0][1] = 0 + 0 + 30*35*15 = 15750

N[1][2] = 0 + 0 + 35*15*5 = 2626

N[2][3] = 0 + 0 + 15*5*10 = 750

N[3][4] = 0 + 0 + 5*10*20 = 1000

N[4][5] = 0 + 0 + 10*20*25 = 5000

19

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5
0 0 15750 7875
1 0 2625
2 0 750
3 0 1000
4 0 5000
5 0

k 0 1 2 3 4 5
0 0 0
1 1
2 2
3 3
4 4
5

start

end

i

j

= 0 + 2625 + 30*35*5 = 7875
= 15750 + 0 + 30*15*5 = 18000

20

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5
0 0 15750 7875
1 0 2625 4375
2 0 750
3 0 1000
4 0 5000
5 0

k 0 1 2 3 4 5
0 0 0
1 1 2
2 2
3 3
4 4
5

start

end

i

j

= 0 + 750 + 35*15*10 = 6000
= 2625 + 0 + 35*5*10 = 4375

21

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5
0 0 15750 7875
1 0 2625 4375
2 0 750 2500
3 0 1000
4 0 5000
5 0

k 0 1 2 3 4 5
0 0 0
1 1 2
2 2 2
3 3
4 4
5

start

end

i

j

= 0 + 1000 + 15*5*20 = 2500
= 750 + 0 + 15*10*20 = 3750

22

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5
0 0 15750 7875
1 0 2625 4375
2 0 750 2500
3 0 1000 3500
4 0 5000
5 0

k 0 1 2 3 4 5
0 0 0
1 1 2
2 2 2
3 3 4
4 4
5

start

end

i

j

= 0 + 5000 + 5*10*25 = 6250

= 1000 + 0 + 5*20*25 = 3500

23

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5
0 0 15750 7875 9375
1 0 2625 4375
2 0 750 2500
3 0 1000 3500
4 0 5000
5 0

k 0 1 2 3 4 5
0 0 0 2
1 1 2
2 2 2
3 3 4
4 4
5

start

end

i

j

= 0 + 4375 + 30*35*10 = 14875
= 15750 + 750 + 30*15*10 = 21000
= 7875 + 0 + 30*5*10 = 9375

24

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5
0 0 15750 7875 9375
1 0 2625 4375 7125
2 0 750 2500
3 0 1000 3500
4 0 5000
5 0

k 0 1 2 3 4 5
0 0 0 2
1 1 2 2
2 2 2
3 3 4
4 4
5

start

end

i

j

= 0 + 2500 + 35*15*20 = 13000
= 2625 + 1000 + 35*5*20 = 7125
= 4375 + 0 + 35*10*20 = 11375

25

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5
0 0 15750 7875 9375
1 0 2625 4375 7125
2 0 750 2500 5375
3 0 1000 3500
4 0 5000
5 0

k 0 1 2 3 4 5
0 0 0 2
1 1 2 2
2 2 2 2
3 3 4
4 4
5

start

end

i

j

= 0 + 3500 + 15*5*25 = 5375
= 750 + 5000 + 15*10*25 = 9500
= 2500 + 0 + 15*20*25 = 10000

26

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5
0 0 15750 7875 9375 11875
1 0 2625 4375 7125
2 0 750 2500 5375
3 0 1000 3500
4 0 5000
5 0

k 0 1 2 3 4 5
0 0 0 2 2
1 1 2 2
2 2 2 2
3 3 4
4 4
5

start

end

i

j

= 0 + 7125 + 30*35*20 = 28125

= 15750 + 2500 + 30*15*20 = 27250

= 7875 + 1000 + 30*5*20 = 11875
= 9375 + 0 + 30*10*20 = 15375

27

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5
0 0 15750 7875 9375 11875
1 0 2625 4375 7125 10500
2 0 750 2500 5375
3 0 1000 3500
4 0 5000
5 0

k 0 1 2 3 4 5
0 0 0 2 2
1 1 2 2 2
2 2 2 2
3 3 4
4 4
5

start

end

i

j

= 0 + 5375 + 35*15*25 = 18500
= 2625 + 3500 + 35*5*25 = 10500
= 4375 + 5000 + 35*10*25 = 18125
= 7125 + 0 + 35*20*25 = 24625

28

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5
0 0 15750 7875 9375 11875 15125
1 0 2625 4375 7125 10500
2 0 750 2500 5375
3 0 1000 3500
4 0 5000
5 0

k 0 1 2 3 4 5
0 0 0 2 2 2
1 1 2 2 2
2 2 2 2
3 3 4
4 4
5

start

end

i

j

= 0 + 10500 + 30*35*25 = 36750
= 15750 + 5375 + 30*15*25 = 32375
= 7875 + 3500 + 30*5*25 = 15125
= 9375 + 5000 + 30*10*25 = 21875
= 11875 + 0 + 30*20*25 = 26875

29

matrix:
dimension: 30x35 35x15 15x5 5x10 10x20 20x25

N 0 1 2 3 4 5
0 0 15750 7875 9375 11875 15125
1 0 2625 4375 7125 10500
2 0 750 2500 5375
3 0 1000 3500
4 0 5000
5 0

k 0 1 2 3 4 5
0 0 0 2 2 2
1 1 2 2 2
2 2 2 2
3 3 4
4 4
5

start

end

i

j

optimal order in which the following matrices should be multiplied:

General
Dynamic Programming Technique

Applies to an optimization problem that at first seems to require a lot of
time (possibly exponential), provided we have:

• Simple subproblems: the subproblems can be defined in terms of a
few variables, such as j, k, l, m, and so on.

• Subproblem overlap: the subproblems are not independent, but
instead they overlap (hence, should be constructed bottom-up).

• Subproblem optimality: the global optimum value can be defined in
terms of optimal subproblems

Dynamic Programming 30

0/1 Knapsack Problem
Given: A set S of n items, with each item i having
• wi - a positive weight
• bi - a positive benefit
Goal: Choose items with maximum total benefit but with weight at
most W.

If we are not allowed to take fractional amounts, then this is the 0/1
knapsack problem.
• In this case, we let T denote the set of items we take
• Objective: maximize

Dynamic Programming 31

å
ÎTi

ib å
Î

£
Ti

i Ww
• Constraint:

Example
• Given: A set S of n items, with each item i having

– bi - a positive �benefit�
– wi - a positive �weight�

• Goal: Choose items with maximum total benefit but with weight at
most W.

Dynamic Programming 32

Weight:
Benefit:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in
$20 $3 $6 $25 $80

Items:

box of width 9 in
Solution:
• item 5 ($80, 2 in)
• item 3 ($6, 2in)
• item 1 ($20, 4in)

�knapsack�

33

A 0/1 Knapsack Algorithm:
First Attempt

Sk: Set of items numbered 1 to k.
• Idea: Define B[k] = best selection from Sk.

• Problem: does not have subproblem optimality.
– Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of

(benefit, weight) pairs and total weight W = 20

Best for S4:

Best for S5:

Dynamic Programming 34

A 0/1 Knapsack Algorithm:
Second Attempt

Sk: Set of items numbered 1 to k.
• Idea: Define B[k,w] to be the best selection from Sk with weight at most w
• Good news: this does have subproblem optimality.

That is, the best subset of Sk with weight at most w is either
• the best subset of Sk-1 with weight at most w or
• the best subset of Sk-1 with weight at most w-wk plus item k

î
í
ì

+---
>-

=
else}],1[],,1[max{

 if],1[
],[

kk

k

bwwkBwkB
wwwkB

wkB

Dynamic Programming 35

0/1 Knapsack Algorithm

• Recall the definition of B[k,w]

• Since B[k,w] is defined in terms
of B[k-1,*], we can use two
arrays of instead of a matrix

• Running time: O(nW).

• Not a polynomial-time
algorithm since W may be large

• This is a pseudo-polynomial
time algorithm

Algorithm 01Knapsack(S, W):
Input: set S of n items with benefit bi

and weight wi; maximum weight W
Output: benefit of best subset of S with

weight at most W
let A and B be arrays of length W + 1
for w ¬ 0 to W do

B[w] ¬ 0
for k ¬ 1 to n do

copy array B into array A
for w ¬ wk to W do

if A[w-wk] + bk > A[w] then
B[w] ¬ A[w-wk] + bk

return B[W]

î
í
ì

+---
>-

=
else}],1[],,1[max{

 if],1[
],[

kk

k

bwwkBwkB
wwwkB

wkB

