## Sorting Lower Bound

## Comparison Based Sorting

Recall - Sorting

- input: A sequence of $n$ values $x_{1}, x_{2}, \ldots, x_{n}$
- output: A permutation $y_{1}, y_{2}, \ldots, y_{n}$ such that $y_{1} \leq y_{2} \leq \ldots \leq y_{n}$

Many algorithms are comparison based

- they sort by making comparisons between pairs of objects
- ex: selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...
- best so far runs in $O(n \log n)$ time ... can we do better?

Let's derive a lower bound on the running time of any algorithm that uses comparisons to sort $n$ elements $x_{1}, x_{2}, \ldots ., x_{n}$

## Counting Comparisons

A decision tree represents every sequence of comparisons that an algorithm might make on an input of size $n$

- each possible run of the algorithm corresponds to a root-to-leaf path
- at each internal node a comparison $x_{i}<x_{j}$ is performed and branching made
- nodes annotated with the orderings consistent with the comparisons made so far
- leaf contains result of computation (a total order of elements)



## Decision Tree Example

Algorithm: insertion sort
Instance $(n=3)$ : the numbers $a, b, c$


## Height of a Decision Tree

## Claim: The height of a decision tree is $\Omega(n \log n)$.

Proof: There are $n$ ! leaves. A tree of height $h$ has at most $2^{h}$ leaves. So

$$
\begin{aligned}
2^{h} & \geq n! \\
h & \geq \log _{2}(n!) \\
& \geq c \cdot \log _{2}\left(n^{n}\right) \\
& =c \cdot n \log _{2} n .
\end{aligned}
$$

Thus, $h \in \Omega(n \log n)$.


## Lower Bound

## Theorem: Every comparison sort requires $\Omega(n \log n)$ in the worst-case.

Proof: Given a comparison sort, we look at the decision tree it generates on an input of size $n$.

- Each path from root to leaf is one possible sequence of comparisons
- Length of the path is the number of comparisons for that instance
- Height of the tree is the worst-case path length (number of comparisons)
Height of the tree is $\Omega(n \log n)$ by the previous claim. Hence, every comparison sort requires $\Omega(n \log n)$ comparisons.

