Selection

Selection Problem

- Given an integer k and n elements $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$, taken from a total order, find the k-th smallest element in this set.
- Of course, we can sort the set in $\mathrm{O}(n \log n)$ time and then index the k-th element.
- Ex when $\mathrm{k}=3$: $5,10,6,3,14,12,2 \rightarrow 2,3,5,6,10,12,14$
- Can we solve the selection problem faster?

Quick-Select

A randomized selection algorithm based on the prune-and-search paradigm:

- Prune: pick a random element \boldsymbol{x} (called pivot) and partition \boldsymbol{S} into
- \boldsymbol{L} elements less than \boldsymbol{x}
- \boldsymbol{E} elements equal \boldsymbol{x}
- \boldsymbol{G} elements greater than \boldsymbol{x}
- Search: depending on k, either answer is in \boldsymbol{E}, or we need to recurse in either \boldsymbol{L} or \boldsymbol{G}

L
$k \leq|L|$

G

$$
\begin{gathered}
\boldsymbol{k}>|\boldsymbol{L}|+|\boldsymbol{E}| \\
\boldsymbol{k},=\boldsymbol{k}-|\boldsymbol{L}|-|\boldsymbol{E}|
\end{gathered}
$$

$|\boldsymbol{L}|<\boldsymbol{k} \leq|\boldsymbol{L}|+|\boldsymbol{E}|$ (done)

Partition

We partition an input sequence as in the quick-sort algorithm:

- Remove, in turn, each element \boldsymbol{y} from \boldsymbol{S} and
- Insert \boldsymbol{y} into $\boldsymbol{L}, \boldsymbol{E}$ or \boldsymbol{G}, depending on the result of the comparison with the pivot \boldsymbol{p}

Each insertion and removal takes $\boldsymbol{O}(1)$ time

Thus, the partition step of quick-select takes $\boldsymbol{O}(\boldsymbol{n})$ time

```
Algorithm partition \((\boldsymbol{S}, \boldsymbol{p})\)
    Input sequence \(S\), pivot \(p\)
    Output subsequences \(L, E, G\) of the
        elements of \(\boldsymbol{S}\) less than, equal to,
        or greater than the pivot, resp.
    \(L, E, G \leftarrow\) empty sequences
    while \(\neg\) S.isEmpty ()
        \(y \leftarrow\) S.remove(S.first())
        if \(y<p\)
        L.insertLast(y)
    else if \(y=p\)
        E.insertLast(y)
    else \(\{\boldsymbol{y}>\boldsymbol{p}\}\)
        G.insertLast(y)
    return \(L, E, G\)
```


Quick-Select Visualization

An execution of quick-select can be visualized by a recursion path

- each node represents a recursive call of quick-select, and stores k and the remaining sequence

Expected Running Time

Consider a recursive call of quick-select on a sequence of size \boldsymbol{s}

- Good call: the sizes of \boldsymbol{L} and \boldsymbol{G} are each less than $3 \boldsymbol{s} / 4$
- Bad call: one of \boldsymbol{L} and \boldsymbol{G} has size greater than $3 \boldsymbol{s} / 4$

Good call

Bad call

A call is good with probability $1 / 2$

- $1 / 2$ of the possible pivots cause good calls:

Expected Running Time (2)

Probabilistic Fact \#1: The expected number of coin tosses required in order to get one head is two.
Probabilistic Fact \#2: Expectation is a linear function:
$-E(X+Y)=E(X)+E(Y)$
$-E(c X)=c E(X)$

Let $T(n)$ denote the expected running time of quick-select.

- By Fact \#2,
- $T(n) \leq T(3 n / 4)+b n^{*}($ expected $\#$ of calls before a good call)
- By Fact \#1,
- $T(n) \leq T(3 n / 4)+2 b n$
- That is, $T(n)$ is a geometric series:
$-T(n) \leq 2 b n+2 b(3 / 4) n+2 b(3 / 4)^{2} n+2 b(3 / 4)^{3} n+\ldots$
- So $T(n)$ is $O(n)$.

Randomized quick-select runs in $O(n)$ expected time.

Deterministic Selection

We can do selection in $O(n)$ worst-case time.
Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select

- Divide S into $n / 5$ sets of 5 each
- Find a median in each set
- Recursively find the median of the "baby" medians.
- Use median of medians as a guaranteed good pivot

Min size for L

See Exercise C-4.24 for details of analysis.

