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Quick Sort
A sorting algorithm based on the 
divide-and-conquer paradigm
• Divide: pick a pivot element x and 

partition S into 
– L elements less than x
– E elements equal to x
– G elements greater than x

• Recur: sort L and G
• Conquer: join L, E and G

The choice of the pivot affects the 
algorithm’s performance.
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Partition
1. Remove each element y from S
2. Insert y into L, E or G, depending on the 

result of the comparison with the pivot x

• Each insert/remove takes O(1) time.
• Thus, the partition step of quick-sort 

takes O(n) time.
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Algorithm partition(S, x)
Input sequence S, pivot element x
Output subsequences L, E, G
L, E, G ¬ empty sequences
while ¬S.isEmpty()

y ¬ S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G

S

The choice of the pivot affects the performance of Quick Sort.



Quick-Sort Tree
An execution of quick-sort depicted by a binary tree
• Each node represents a recursive call of quick-sort and stores

– Unsorted sequence before the execution and its pivot
– Sorted sequence at the end of the execution

• The root is the initial call 
• The leaves are calls on subsequences of size 0 or 1
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Quick Sort Execution
• Strategy: Select the last element as the pivot
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Quick Sort Execution
• Strategy: Select the last element as the pivot

• Select pivot, partition, recursive call
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Quick Sort Execution
• Strategy: Select the last element as the pivot

• Select pivot, partition, recursive call
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Quick Sort Execution
• Strategy: Select the last element as the pivot

• Join 
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Quick Sort Execution
• Strategy: Select the last element as the pivot
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Quick Sort Execution
• Strategy: Select the last element as the pivot
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Quick Sort Execution
• Strategy: Select the last element as the pivot
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Quick Sort Execution
• Strategy: Select the last element as the pivot
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Quick Sort Execution
• Strategy: Select the last element as the pivot

Quick Sort 13

6 3 5 8 2 4 ® 2 3 4 5 6 8

3 2 ® 2 3 6 5 8 ® 5 6 8

3  ® 3 6 5 ® 5 6

6 ® 6



Quick Sort 14

Worst-case Running Time
Occurs when the pivot is the unique minimum or maximum element
• One of L and G has size n - 1 and the other has size 0
• The running time is proportional to the sum:        n + (n - 1) + … + 2 + 1
• If we use the strategy of selecting the last element as the pivot, this happens when 

the list is already sorted!
Thus, the worst-case running time of quick-sort is O(n2)

depth time
0 n

1 n - 1

… …

n - 1 1

…



Randomized Quick Sort
Pivot selection strategy: choose a random element as the pivot
• Still has worst-case running time O(n2)

– Due to random selection, this case is highly unlikely 
• Expected running time is O(nlogn)
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Expected Running Time
Consider a recursive call of quick-sort on a sequence of size s
• Good call: the sizes of L and G are each less than 3s/4
• Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
• 1/2 of the possible pivots cause good calls:
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9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 3 4 5 6 7 8 9 10 11 12 13 14 151

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Good call Bad call

Good pivotsBad pivots Bad pivots

1   2   3   4    5  6  7  8  9  10  11 12  13  14  15  16



Expected Running Time 
(continued)

For a node of depth 2log4/3n
• the expected input size is one

• the expected height of the quick-sort 
tree is O(logn)

The amount of work done at the nodes 
of the same depth is O(n)

Thus, the expected running time of 
quick-sort is O(nlogn)
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time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

Probabilistic Fact: The expected number of coin tosses required in order to get k
heads is 2k.
For a node of depth i, we expect
• i/2 ancestors are good calls
• size of the input sequence for the current call is at most (3/4)i/2n



In-Place Quick-Sort
During the partition step, use replace operations to rearrange elements of the input 
sequences such that:
• elements less than pivot have rank < h
• elements equal to pivot have rank between [h, k]
• elements greater than pivot have rank > k
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Algorithm inPlaceQuickSort(S, l, r)
Input sequence S, ranks l and r
Output sequence S with the

elements of rank between l and r
rearranged in increasing order

if l ³ r
return

i ¬ a random integer between l and r
x ¬ S.elemAtRank(i)
(h, k) ¬ inPlacePartition(x)
inPlaceQuickSort(S, l, h - 1)
inPlaceQuickSort(S, k + 1, r)



In-Place Partition
Performs a partitioning using two indices to split S into L and  E ∪	G (a similar 
method can split E ∪	G into E and G).

Repeat until h and k cross:
• Scan h to the right until it finds an element ≥ x
• Scan k to the left until it finds an element < x
• Swap elements at indices h and k
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h k

x = 6
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Summary of Sorting Algorithms
Algorithm Time Notes

selection-sort O(n2) in-place, not stable
slow (good for small inputs)

insertion-sort O(n2) in-place, stable
slow (good for small inputs)

quick-sort O(n log n)
expected

in-place, not stable
randomized
fast (good for large inputs)

heap-sort O(n log n) in-place, not stable
fast (good for large inputs)

merge-sort O(n log n)
not in-place, stable 
sequential data access
fast  (good for huge inputs)



Other: Nuts and Bolts

You are given a collection of n bolts of different widths, and n
corresponding nuts.
• You can test whether a given nut and bolt fit together, from which 

you learn whether the nut is too large, too small, or an exact match 
for the bolt.

• The differences in size between pairs of nuts or bolts are too small to 
see by eye, so you cannot compare the sizes of two nuts or two bolts 
directly.

• You are to match each bolt to each nut. 

Give an efficient algorithm to solve the nuts and bolts problem.
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