Quick Sort

Quick Sort

A sorting algorithm based on the divide-and-conquer paradigm

- Divide: pick a pivot element \boldsymbol{x} and partition \boldsymbol{S} into
- \boldsymbol{L} elements less than \boldsymbol{x}
- \boldsymbol{E} elements equal to \boldsymbol{x}
- \boldsymbol{G} elements greater than \boldsymbol{x}
- Recur: sort \boldsymbol{L} and \boldsymbol{G}
- Conquer: join $\boldsymbol{L}, \boldsymbol{E}$ and \boldsymbol{G}

The choice of the pivot affects the algorithm's performance.

Partition

1. Remove each element \boldsymbol{y} from \boldsymbol{S}
2. Insert \boldsymbol{y} into $\boldsymbol{L}, \boldsymbol{E}$ or \boldsymbol{G}, depending on the result of the comparison with the pivot \boldsymbol{x}

- Each insert/remove takes $\boldsymbol{O}(1)$ time.
- Thus, the partition step of quick-sort takes $\boldsymbol{O}(\boldsymbol{n})$ time.
S
\square
$\operatorname{Algorithm} \operatorname{partition}(S, x)$
Input sequence \boldsymbol{S}, pivot element \boldsymbol{x}
Output subsequences L, E, G
$L, E, G \leftarrow$ empty sequences
while \neg S.isEmpty ()
$y \leftarrow$ S.remove $($ S.first())
if $y<x$
L.insertLast(y)
else if $y=x$
E.insertLast(y)
else $\{\boldsymbol{y}>\boldsymbol{x}\}$
G.insertLast(y)
return L, E, G

The choice of the pivot affects the performance of Quick Sort.

Quick-Sort Tree

An execution of quick-sort depicted by a binary tree

- Each node represents a recursive call of quick-sort and stores
- Unsorted sequence before the execution and its pivot
- Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

Quick Sort Execution

- Strategy: Select the last element as the pivot

Quick Sort Execution

- Strategy: Select the last element as the pivot

- Select pivot, partition, recursive call

Quick Sort Execution

- Strategy: Select the last element as the pivot

- Select pivot, partition, recursive call

Quick Sort Execution

- Strategy: Select the last element as the pivot

- Join

Quick Sort Execution

- Strategy: Select the last element as the pivot

Quick Sort Execution

- Strategy: Select the last element as the pivot

Quick Sort Execution

- Strategy: Select the last element as the pivot

Quick Sort Execution

- Strategy: Select the last element as the pivot

Quick Sort Execution

- Strategy: Select the last element as the pivot

Worst-case Running Time

Occurs when the pivot is the unique minimum or maximum element

- One of \boldsymbol{L} and \boldsymbol{G} has size $\boldsymbol{n}-1$ and the other has size 0
- The running time is proportional to the sum: $\boldsymbol{n}+(\boldsymbol{n}-1)+\ldots+2+1$
- If we use the strategy of selecting the last element as the pivot, this happens when the list is already sorted!
Thus, the worst-case running time of quick-sort is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$

depth	time
0	\boldsymbol{n}
1	$\boldsymbol{n}-1$
\ldots	\cdots
$\boldsymbol{n}-1$	1

Randomized Quick Sort

Pivot selection strategy: choose a random element as the pivot

- Still has worst-case running time $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$
- Due to random selection, this case is highly unlikely
- Expected running time is $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$

Expected Running Time

Consider a recursive call of quick-sort on a sequence of size s

- Good call: the sizes of \boldsymbol{L} and \boldsymbol{G} are each less than $3 \boldsymbol{s} / 4$
- Bad call: one of \boldsymbol{L} and \boldsymbol{G} has size greater than $3 \boldsymbol{s} / 4$

Good call

Bad call

A call is good with probability $1 / 2$

- $1 / 2$ of the possible pivots cause good calls:

Expected Running Time (continued)

Probabilistic Fact: The expected number of coin tosses required in order to get \boldsymbol{k} heads is $2 \boldsymbol{k}$.

For a node of depth i, we expect

- $i / 2$ ancestors are good calls
- size of the input sequence for the current call is at most $(3 / 4)^{i / 2} \boldsymbol{n}$

For a node of depth $2 \log _{4 / 3} n$

- the expected input size is one
- the expected height of the quick-sort tree is $\boldsymbol{O}(\log \boldsymbol{n})$
The amount of work done at the nodes of the same depth is $\boldsymbol{O}(\boldsymbol{n})$
Thus, the expected running time of quick-sort is $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$

total expected time: $O(n \log n)$

In-Place Quick-Sort

During the partition step, use replace operations to rearrange elements of the input sequences such that:

- elements less than pivot have rank $<\boldsymbol{h}$
- elements equal to pivot have rank between $[\boldsymbol{h}, \boldsymbol{k}]$
- elements greater than pivot have rank $>\boldsymbol{k}$

```
Algorithm inPlaceQuickSort(S, l, r)
    Input sequence \(\boldsymbol{S}\), ranks \(\boldsymbol{l}\) and \(\boldsymbol{r}\)
    Output sequence \(S\) with the
        elements of rank between \(\boldsymbol{l}\) and \(\boldsymbol{r}\)
        rearranged in increasing order
    if \(l \geq r\)
            return
    \(i \leftarrow\) a random integer between \(\boldsymbol{l}\) and \(\boldsymbol{r}\)
    \(x \leftarrow\) S.elemAtRank(i)
    \((h, k) \leftarrow \operatorname{inPlacePartition}(x)\)
    inPlaceQuickSort(S, l, h-1)
    inPlaceQuickSort( \(\boldsymbol{S}, \boldsymbol{k}+1, r\) )
```


In-Place Partition

Performs a partitioning using two indices to split S into L and $E \cup G$ (a similar method can split $E \cup G$ into E and G).

Repeat until h and k cross:

- Scan h to the right until it finds an element $\geq x$
- Scan k to the left until it finds an element $<x$
- Swap elements at indices h and k

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O\left(n^{2}\right)$	in-place, not stable slow (good for small inputs)
insertion-sort	$O\left(n^{2}\right)$	in-place, stable slow (good for small inputs)
quick-sort	$\begin{gathered} \boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}) \\ \text { expected } \end{gathered}$	in-place, not stable randomized fast (good for large inputs)
heap-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	in-place, not stable fast (good for large inputs)
merge-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	not in-place, stable sequential data access fast (good for huge inputs)

Other: Nuts and Bolts

You are given a collection of n bolts of different widths, and n corresponding nuts.

- You can test whether a given nut and bolt fit together, from which you learn whether the nut is too large, too small, or an exact match for the bolt.
- The differences in size between pairs of nuts or bolts are too small to see by eye, so you cannot compare the sizes of two nuts or two bolts directly.
- You are to match each bolt to each nut.

Give an efficient algorithm to solve the nuts and bolts problem.

