Analysis of Algorithms

- An algorithm is a step-by-step procedure for performing some task (ex: sorting a set of integers) in a finite amount of time.

- We are concerned with the following properties:
- Correctness
- Efficiency (how fast it is, how many resources it needs)

Running Time

- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
- Easier to analyze
- Crucial to applications such as
 games, finance, and robotics

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like std::clock() to get an accurate measure of the actual running time

- Plot the results

Limitations of Experiments

- Need to implement the algorithm
- may be difficult
- Experiments done on a limited set of test inputs
- may not be indicative of running times on other inputs not included in the experiment
- Difficult to compare
- same hardware and software environments must be used

Theoretical Analysis

- Uses pseudocode, a high-level description of the algorithm
- no implementation necessary
- Takes into account all possible inputs
- Characterizes running time by $f(n)$, a function of the input size n
- allows us to evaluate the speed of an algorithm independent of hardware/software environment

Pseudocode

- Mixture of natural language and high-level programming constructs that describe the main ideas behind an algorithm implementation
- Preferred notation for describing algorithms
- Hides program design issues

Pseudocode Details

- Control flow
- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...]) Input ...
Output ...

- Method call
var.method (arg [, arg...])
- Return value
return expression
- Expressions
\leftarrow Assignment (like $=$ in C++)
$=$ Equality testing (like $==$ in $\mathrm{C}++$)
n^{2} Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model

- Views a computer as:
- a CPU, with
- a potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character

Memory cells are numbered and accessing any cell in memory takes unit time.

Random Access refers to ability of CPU to access arbitrary memory cell with one primitive operation

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we'll see why later)
- Assumed to take a constant amount of time in the RAM model
- Includes:
- evaluating an expression
- indexing into an array
- assigning a value to a variable
- calling a method
- returning from a method

Counting Primitive Operations

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm arrayMax(A,n) #operations
currentMax \leftarrowA[0]
    for }\boldsymbol{i}\leftarrow1\mathrm{ to }\boldsymbol{n}-1\mathrm{ do
        if }A[i]>\mathrm{ currentMax then
        currentMax \leftarrowA[i]
        { increment counter i }
    return currentMax
```

\# operations
2
$2+n$

$$
2(n-1)
$$

$$
2(n-1)
$$

$$
2(n-1)
$$

$$
1
$$

$$
7 n-1
$$

Estimating Running Time

- Algorithm arrayMax executes $7 \boldsymbol{n}-1$ primitive operations in the worst case.
- Define:

$$
\begin{aligned}
\boldsymbol{a} & =\text { time taken by the fastest primitive operation } \\
\boldsymbol{b} & =\text { time taken by the slowest primitive operation }
\end{aligned}
$$

- Let $\boldsymbol{T}(\boldsymbol{n})$ be worst-case time of arrayMax. Then

$$
a(7 n-1) \leq \boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{b}(7 \boldsymbol{n}-1)
$$

Hence, the running time $\boldsymbol{T}(\boldsymbol{n})$ is bounded by two linear functions.

Growth Rate of Running Time

- Changing the hardware/software environment
- affects $\boldsymbol{T}(\boldsymbol{n})$ by a constant factor, but
- does not alter the growth rate of $\boldsymbol{T}(\boldsymbol{n})$
- The linear growth rate of the running time $\boldsymbol{T}(\boldsymbol{n})$ is an intrinsic property of algorithm arrayMax

Growth Rates

Constant ≈ 1
Logarithmic $\approx \log n$
Linear $\approx \boldsymbol{n}$
Quadratic $\approx \boldsymbol{n}^{2}$
Cubic $\quad \approx \boldsymbol{n}^{3}$
Polynomial $\approx \boldsymbol{n}^{k}$ (for $k \geq 1$)
Exponential $\approx a^{\boldsymbol{n}} \quad(a \geq 1)$

Growth rate is not affected by

- constant factors or
- lower-order terms

Ex: $10^{2} \boldsymbol{n}+10^{5}$ is a linear function
Ex: $10^{5} \boldsymbol{n}^{2}+10^{8} \boldsymbol{n}$ is a quadratic function

Asymptotic Complexity

- Worst case running time of an algorithm as a function of input size n for large n.
- Expressed using only the highest-order term in the expression for the exact running time.
- Instead of exact running time, say $O\left(n^{2}\right)$
- Written using asymptotic notation $(\boldsymbol{O}, \Omega, \Theta, o, \omega)$
$-\mathrm{Ex}: f(n)=O\left(n^{2}\right)$
- Describes how $f(n)$ grows in comparison to n^{2}
- The notations describe different rate-of-growth relations between the defining function and the defined set of functions

O-notation

For functions $g(n)$, we define $O(g(n))$, big-O of n, as the set:

$$
O(g(n))=\{f(n):
$$

\exists positive constants c and n_{0}, such that $\forall n \geq n_{0}$ we have $0 \leq f(n) \leq \operatorname{cg}(n)\}$

Technically, $f(n) \in O(g(n))$. Older usage, $f(n)=O(g(n))$.

Intuitively: Set of all functions whose rate of growth is the same as or lower than that of $g(n)$.
$g(n)$ is an asymptotic upper bound for $f(n)$

Examples

$O(g(n))=\left\{f(n): \exists\right.$ positive constants c and n_{0}, such that $\forall n \geq n_{0}$, we have $\left.0 \leq f(n) \leq \operatorname{cg}(n)\right\}$

- $O(n)$

$$
\begin{aligned}
& -f(n)=2 n+10 \\
& -f(n)=n+1 \\
& -f(n)=10000 n \\
& -f(n)=10000 n+300
\end{aligned}
$$

- $O\left(n^{2}\right)$

$$
\begin{aligned}
& -f(n)=n^{2}+1 \\
& -f(n)=n^{2}+n \\
& -f(n)=10000 n^{2}+10000 n+300 \\
& -f(n)=n^{1.99}
\end{aligned}
$$

- The function \boldsymbol{n}^{2} is not $\boldsymbol{O}(\boldsymbol{n})$
- the inequality $\boldsymbol{n}^{2} \leq \boldsymbol{c} \boldsymbol{n}$ cannot be satisfied since c is constant

Big-Oh Rules

- Drop lower-order terms
- Ex: if $\boldsymbol{f}(\boldsymbol{n})$ is a polynomial of degree \boldsymbol{d}, then $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{d}}\right)$
- Drop constant factors, using the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(3 \boldsymbol{n})$ "
- Use the smallest possible class of functions
- Say " $2 \boldsymbol{n}$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $2 \boldsymbol{n}$ is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ "
- See Theorem 1.7 in your book

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
- Find the worst-case number of primitive operations executed as a function of the input size
- We express this function with big-Oh notation
- Ex:
- arrayMax executes at most $7 \boldsymbol{n}-1$ primitive operations
- arrayMax "runs in $\boldsymbol{O}(\boldsymbol{n})$ time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Ex: Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The i-th prefix average of an array \boldsymbol{X} is average of the first $(\boldsymbol{i}+1)$ elements of \boldsymbol{X} :

$$
A[i]=(X[0]+X[1]+\ldots+X[i]) /(i+1)
$$

- Prefix average has applications in economic and statistics

Prefix Averages V1 $\mathrm{O}\left(n^{2}\right)$ - Quadratic!

The following algorithm computes prefix averages by applying the definition

Algorithm prefixaverages1(X, n)
Input array \boldsymbol{X} of \boldsymbol{n} integers

Output array \boldsymbol{A} of prefix averages of \boldsymbol{X}
rough \# operations
$A \leftarrow$ new array of \boldsymbol{n} integers
for $i \leftarrow 0$ to $n-1$ do
$s \leftarrow X[0]$
for $j \leftarrow 1$ to i do
$s \leftarrow s+X[j]$
$A[i] \leftarrow s /(i+1)$
return A
n
n
n
$1+2+\ldots+(n-1)$
$1+2+\ldots+(n-1)$
n
1

Prefix Averages V2

 $\mathrm{O}(n)$ - Linear!- The following algorithm computes prefix averages by keeping a running sum

Algorithm prefixAverages2 (X, n)
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output array \boldsymbol{A} of prefix averages of $\boldsymbol{X} \quad$ rough \# operations
$A \leftarrow$ new array of \boldsymbol{n} integers \boldsymbol{n}
$s \leftarrow 0$
for $i \leftarrow 0$ to $n-1$ do \boldsymbol{n}
$s \leftarrow s+X[i] \quad n$
$A[i] \leftarrow s /(i+1) \quad n$
return A

Q-notation

For functions $g(n)$, we define $\Omega(g(n))$, big-Omega of n, as the set:

$$
\Omega(g(n))=\{f(n):
$$

\exists positive constants c and n_{0}, such that $\forall n \geq n_{0}$ we have $0 \leq \operatorname{cg}(n) \leq f(n)\}$

Intuitively: Set of all functions whose rate of growth is the same as or higher than that of $g(n)$.
$g(n)$ is an asymptotic lower bound for $f(n)$

Θ-notation

For functions $g(n)$, we define $\Theta(g(n))$, big-Theta of n, as the set:

$$
\begin{aligned}
& \Theta(g(n))=\{f(n) \text { : } \\
& \exists \text { positive constants } c_{1}, \mathrm{c}_{2} \text {, and } n_{0}, \\
& \text { such that } \forall n \geq n_{0} \\
& \text { we have } \left.0 \leq \mathrm{c}_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}
\end{aligned}
$$

Intuitively: Set of all functions that have the same rate of growth as $g(n)$.
$g(n)$ is an asymptotically tight bound for $f(n)$

Relationship between O, Ω, Θ

Relatives of O and Ω

Little-oh

- $f(n)$ is $\mathrm{o}(g(n))$ if $\forall c>0, \exists n_{0} \geq 0$ such that $f(n) \leq \operatorname{cg}(n)$ for $n \geq n_{0}$

Little-omega

- $f(n)$ is $\omega(g(n))$ if $\forall c>0, \exists n_{0} \geq 0$ such that $\mathrm{c} g(n) \leq f(n)$ for $n \geq n_{0}$

Intuition for Asymptotic Notation

Big-Oh

- $f(n)$ is $\mathrm{O}(\mathrm{g}(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$

Big-Omega

- $f(n)$ is $\Omega(\mathrm{g}(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$ Big-Theta
- $f(n)$ is $\Theta(\mathrm{g}(n))$ if $f(n)$ is asymptotically equal to $g(n)$
little-oh
- $f(n)$ is $\mathrm{o}(\mathrm{g}(n))$ if $f(n)$ is asymptotically strictly less than $g(n)$ little-omega
- $f(n)$ is $\omega(\mathrm{g}(n))$ if $f(n)$ is asymptotically strictly greater than $g(n)$

Math you need to review

- Summations (Sec. 1.3.1)
- Logarithms and Exponents (Sec. 1.3.2)

$$
\log _{b} a=c \quad \text { if } \quad a=b^{c}
$$

properties of logarithms:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b} x=a=a \log _{b} x \\
& \log _{b} a=\log _{x} a \log _{x} b
\end{aligned}
$$

$a^{(b+c)}=a^{b} a^{c}$
$a^{b c}=\left(a^{b}\right)^{c}$
$\mathrm{a}^{\mathrm{b}} / \mathrm{a}^{\mathrm{c}}=\mathrm{a}^{(\mathrm{b}-\mathrm{c})}$
$b=a^{\log _{a} b}$
$\mathrm{b}^{\mathrm{c}}=\mathrm{a}^{\mathrm{c}^{*} \log _{\mathrm{a}} \mathrm{b}}$

- Proof techniques (Sec. 1.3.3)
* Basic probability (Sec. 1.3.4)

