
Analysis of Algorithms
• An algorithm is a step-by-step procedure for performing some 

task (ex: sorting a set of integers) in a finite amount of time.

• We are concerned with the following properties:
– Correctness
– Efficiency (how fast it is, how many resources it needs)

Algorithm OutputInput

1Analysis of Algorithms



Running Time 
• The running time of an algorithm 

typically grows with the input size.

• Average case time is often difficult 
to determine.

• We focus on the worst case running 
time.
– Easier to analyze
– Crucial to applications such as 

games, finance, and robotics

0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e

1000 2000 3000 4000

Input Size

best case
average case
worst case

2Analysis of Algorithms



Experimental Studies

• Write a program implementing 
the algorithm

• Run the program with inputs of 
varying size and composition
– Use a method like 
std::clock() to get an 
accurate measure of the actual 
running time

• Plot the results

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e 
(m

s)

3Analysis of Algorithms



Limitations of Experiments

• Need to implement the algorithm
– may be difficult

• Experiments done on a limited set of test inputs
– may not be indicative of running times on other inputs not 

included in the experiment

• Difficult to compare
– same hardware and software environments must be used

4Analysis of Algorithms



Theoretical Analysis

• Uses pseudocode, a high-level description of the algorithm
– no implementation necessary

• Takes into account all possible inputs

• Characterizes running time by f(n), a function of the input 
size n
– allows us to evaluate the speed of an algorithm 

independent of hardware/software environment

5Analysis of Algorithms



Pseudocode

• Mixture of natural language and high-level programming 
constructs that describe the main ideas behind an algorithm 
implementation

• Preferred notation for
describing algorithms

• Hides program design issues

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax¬ A[0]
for i¬ 1 to n - 1 do
if A[i] > currentMax then
currentMax¬ A[i]

return currentMax

6Analysis of Algorithms



Pseudocode Details
• Control flow

– if … then … [else …]
– while … do …
– repeat … until …
– for … do …
– Indentation replaces braces

• Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

• Method call
var.method (arg [, arg…])

• Return value
return expression

• Expressions
¬Assignment (like = in C++)
= Equality testing (like == in C++)
n2 Superscripts and other 

mathematical formatting 
allowed

7Analysis of Algorithms



The Random Access Machine 
(RAM) Model

• Views a computer as:
– a CPU, with
– a potentially unbounded bank of 
memory cells, each of which can hold 
an arbitrary number or character

0
1
2

8Analysis of Algorithms

Memory cells are numbered and accessing any cell in memory 
takes unit time.

Random Access refers to ability of CPU to access arbitrary memory 
cell with one primitive operation



Primitive Operations

– evaluating an expression
– assigning a value to a 

variable

9Analysis of Algorithms

– indexing into an array
– calling a method
– returning from a method

• Basic computations performed by an algorithm
– Identifiable in pseudocode
– Largely independent from the programming language
– Exact definition not important (we’ll see why later)

• Assumed to take a constant amount of time in the RAM 
model

• Includes:



Counting Primitive Operations
By inspecting the pseudocode, we can determine the maximum 
number of primitive operations executed by an algorithm, as a 
function of the input size

Analysis of Algorithms 10

# operations
2

2 + n
2(n - 1)
2(n - 1)
2(n - 1)

1
--------------
7n - 1

Algorithm arrayMax(A, n)
currentMax¬ A[0]
for i¬ 1 to n - 1 do

if A[i] > currentMax then
currentMax¬ A[i]

{ increment counter i }
return currentMax



Estimating Running Time
• Algorithm arrayMax executes 7n - 1 primitive operations in 

the worst case.  
• Define:

a = time taken by the fastest primitive operation
b = time taken by the slowest primitive operation

• Let T(n) be worst-case time of arrayMax. Then
a(7n - 1) £ T(n) £ b(7n - 1)

Hence, the running time T(n) is bounded by two linear functions.

11Analysis of Algorithms



Growth Rate of Running Time

• Changing the hardware/software environment 
– affects T(n) by a constant factor, but
– does not alter the growth rate of T(n)

• The linear growth rate of the running time T(n) is an intrinsic 
property of algorithm arrayMax

12Analysis of Algorithms



Growth Rates
Constant » 1
Logarithmic  » logn
Linear » n
Quadratic » n2

Cubic » n3

Polynomial » nk    (for k ≥ 1)

Exponential » an (a ≥ 1)

Analysis of Algorithms 13

Growth rate is not affected by 
– constant factors or 
– lower-order terms

Ex: 102n + 105 is a linear function
Ex: 105n2 + 108n is a quadratic function



Asymptotic Complexity
• Worst case running time of an algorithm as a function of input 

size n for large n.
• Expressed using only the highest-order term in the 

expression for the exact running time.
– Instead of exact running time, say O(n2)

• Written using asymptotic notation (O, W, Q, o, w)
– Ex: f(n) = O(n2)
– Describes how f(n) grows in comparison to n2

• The notations describe different rate-of-growth relations 
between the defining function and the defined set of functions

Analysis of Algorithms 14



O-notation
For functions g(n), we define O(g(n)), 
big-O of n, as the set:

Analysis of Algorithms 15

O(g(n)) = { f(n) :
∃ positive constants c and n0, 
such that ∀n ≥ n0
we have 0 £ f(n) £ cg(n) }

Intuitively: Set of all functions whose rate of growth is the same as or 
lower than that of g(n).

Technically,  f(n) ∈ O(g(n)).
Older usage,  f(n) = O(g(n)).

g(n) is an asymptotic upper bound for f(n)



Examples

• O(n2)
– f(n) = n2 + 1
– f(n) = n2 + n
– f(n) = 10000n2 +10000n + 300
– f(n) = n1.99

Analysis of Algorithms 16

O(g(n)) = { f(n) :  ∃ positive constants c and n0, 
such that ∀n ≥ n0 , we have 0 £ f(n) £ cg(n) }

• O(n)
– f(n) = 2n + 10
– f(n) = n + 1
– f(n) = 10000n
– f(n) = 10000n + 300

• The function n2 is not O(n)
– the inequality n2 £ cn cannot be satisfied since c is constant



Big-Oh Rules

Analysis of Algorithms 17

• Drop lower-order terms
– Ex: if  f(n) is a polynomial of degree d, then f(n) is O(nd)

• Drop constant factors, using the simplest expression of the 
class
– Say �3n + 5 is O(n)� instead of �3n + 5 is O(3n)�

• Use the smallest possible class of functions
– Say �2n is O(n)� instead of �2n is O(n2)�

• See Theorem 1.7 in your book



Asymptotic Algorithm Analysis
• The asymptotic analysis of an algorithm determines the running 

time in big-Oh notation
• To perform the asymptotic analysis

– Find the worst-case number of primitive operations 
executed as a function of the input size

– We express this function with big-Oh notation
• Ex:

– arrayMax executes at most 7n - 1 primitive operations
– arrayMax �runs in O(n) time�

• Since constant factors and lower-order terms are eventually 
dropped anyhow, we can disregard them when counting 
primitive operations

18Analysis of Algorithms



Ex: Computing Prefix Averages
• We further illustrate asymptotic 

analysis with two algorithms for 
prefix averages

• The i-th prefix average of an array X
is average of the first (i + 1) elements 
of X:
A[i] = (X[0] + X[1] + … + X[i])/(i+1)

• Prefix average has applications in 
economic and statistics

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X
A

19Analysis of Algorithms



Prefix Averages V1                
The following algorithm computes prefix averages by applying 
the definition

Analysis of Algorithms 20

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X
A ¬ new array of n integers
for i ¬ 0 to n - 1 do

s ¬ X[0]
for j ¬ 1 to i do

s ¬ s + X[j]
A[i] ¬ s / (i + 1)

return A

rough # operations
n
n
n

1 + 2 + … + (n-1)
1 + 2 + … + (n-1)

n
1

O(n2)  - Quadratic!



Prefix Averages V2                
The following algorithm computes prefix averages by keeping 
a running sum

Analysis of Algorithms 21

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X
A ¬ new array of n integers
s ¬ 0
for i ¬ 0 to n - 1 do

s ¬ s + X[i]
A[i] ¬ s / (i + 1)

return A 

rough # operations
n
1
n
n
n
1

O(n)  - Linear!



Ω-notation
For functions g(n), we define Ω(g(n)), 
big-Omega of n, as the set:

Analysis of Algorithms 22

Ω(g(n)) = { f(n) :
∃ positive constants c and n0, 
such that ∀n ≥ n0
we have 0 £ cg(n) £ f(n)}

Intuitively: Set of all functions whose rate of growth is the same as or 
higher than that of g(n).

g(n) is an asymptotic lower bound for f(n)



!-notation
For functions g(n), we define !(g(n)), 
big-Theta of n, as the set:

Analysis of Algorithms 23

!(g(n)) = { f(n) :
∃ positive constants c1, c2, and n0, 
such that ∀n ≥ n0
we have 0 £ c1g(n) £ f(n) £ c2g(n)}

Intuitively: Set of all functions that have the same rate of growth as 
g(n).

g(n) is an asymptotically tight bound for f(n)



Relationship between O, Ω, !

Analysis of Algorithms 24



Relatives of O and Ω
Little-oh
• f(n) is o(g(n)) if ∀c > 0, ∃n0 ≥ 0 such that f(n) £ cg(n) for n ³ n0

Little-omega
• f(n) is w(g(n)) if ∀c > 0, ∃n0 ≥ 0 such that cg(n) £ f(n) for n ³ n0

Analysis of Algorithms 25



Intuition for Asymptotic 
Notation

Big-Oh
n f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
Big-Omega
n f(n) is W(g(n))  if f(n) is asymptotically greater than or equal to g(n)
Big-Theta
n f(n) is Q(g(n))  if f(n) is asymptotically equal to g(n)
little-oh
n f(n) is o(g(n))  if f(n) is asymptotically strictly less than g(n)
little-omega
n f(n) is w(g(n))  if f(n) is asymptotically strictly greater than g(n)

26Analysis of Algorithms



Math you need to review
Summations  (Sec. 1.3.1)
Logarithms and Exponents (Sec. 1.3.2)

Proof techniques (Sec. 1.3.3)
Basic probability (Sec. 1.3.4)

Analysis of Algorithms 27

properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

properties of exponentials:
a(b+c) = aba c
abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

logba = c if    a = bc


