
Design and Analysis of Algorithms - Midterm Overview
 
You should be able to sufficiently justify why any algorithm or data structure operation has the time
complexity it does.

Ch 1. Analysis of Algorithms
• Definition of O, Θ, Ω . I won’t ask you about little-oh, little-omega.
• Show that f(n) is O(g(n))
• Express and justify the runtime of an algorithm in Big-Oh notation
• Amortized analysis

Ch 2. Elementary Data Structures & Ch. 3 Search Trees
How each data structure is implemented, any characteristic properties or definitions of the data structure,
what operations can be performed on it, and understand the complexity of those operations.
Data structures include:
• Stacks (including resizing and amortized analysis for stack operations)
• Queues
• Trees
• Binary Trees
• Priority Queues
• Heaps (including definition, height)
• Dictionaries (hash tables, hash functions, universal hashing, how to avoid collisions, collision handling

strategies, performance in relation to load factor)
• Arbitrary binary search trees (including definition, height)
• Red-black trees (including definition, color properties, height). I won’t ask you to demonstrate the removal

of an item from a red-black tree.
Algorithms include:
• Execution of any data structure operation (e.g., insert into a red-black tree, remove an item from a binary

search tree, find an item in a hash table using linear probing or double hashing, etc.)
• Tree traversals (preorder, postorder, inorder, Euler tour)
• Binary search on an array
• Selection-sort, insertion-sort, heap-sort
• Bottom-up heap construction

Ch. 4 Sorting and Selection
Definitions of stable sort, in-place algorithm, divide and conquer paradigm, and lexicographic order. Lower
bound on comparison-based sorting. A comparison of sorting algorithms based on time-complexity, if it is
stable, and if it is in-place.
Data structures include:
• Set (including operations using generic-merge).
Algorithms include:
• Merge-sort (including sub-routine of merging two sorted lists)
• Quick-sort (including pivot selection, its affect on performance, and sub-routine of partitioning two lists)
• Bucket-sort and radix-sort
• Quick-select

