

Outline and Reading

Flow networks

- Flow (8.1.1)
- Cut (8.1.2)

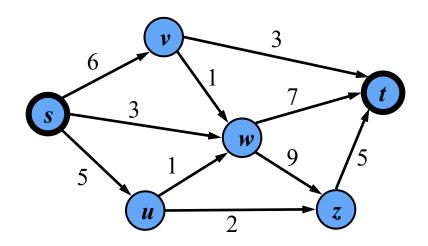
- Augmenting path (8.2.1)
- Maximum flow and minimum cut (8.2.1)
- Ford-Fulkerson's algorithm (8.2.2-8.2.3)
- Edmond Karp's algorithm (8.2.4)

Flow Network

A flow network (or just network) N consists of

- A weighted digraph *G* with nonnegative integer edge weights, where the weight of an edge *e* is called the capacity *c*(*e*) of *e*
- Two distinguished vertices, *s* and *t* of *G*, called the source and sink, respectively, such that *s* has no incoming edges and *t* has no outgoing edges.

Example:



Flow

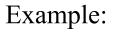
A flow f for a network N is is an assignment of an integer values f(e) to each edge e that satisfies the following properties:

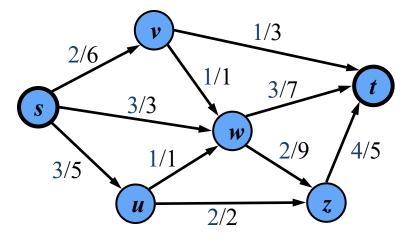
- Capacity rule: for each edge e, $0 \le f(e) \le c(e)$
- Conservation rule: for each vertex $v \neq s, t$

$$\sum_{e \in E^-(v)} f(e) = \sum_{e \in E^+(v)} f(e)$$

where $E^{-}(v)$ and $E^{+}(v)$ are the incoming and outgoing edges of v, resp.

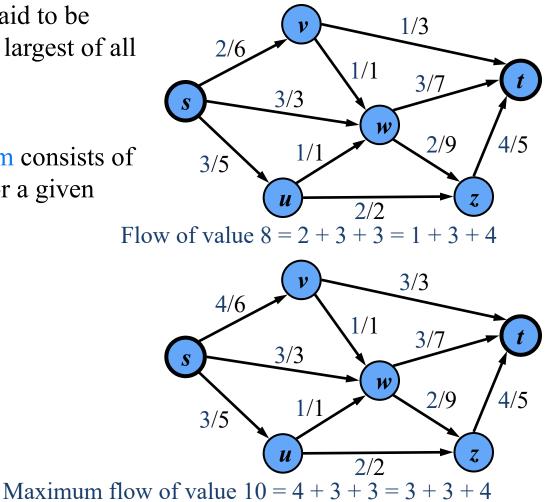
• The value of a flow *f*, denoted |*f*|, is the total flow from the source, which is the same as the total flow into the sink





Maximum Flow

- A flow for a network *N* is said to be maximum if its value is the largest of all flows for *N*
- The maximum flow problem consists of finding a maximum flow for a given network *N*
- Applications
 - Traffic movements
 - Freight transportation
 - Image segmentation

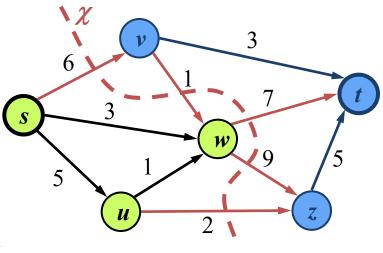


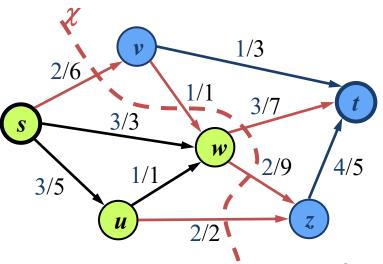
Cut

- A cut of a network N with source s and sink t is a partition $\chi = (V_s, V_t)$ of the vertices of N such that $s \in V_s$ and $t \in V_t$
 - Forward edge of cut χ : origin in V_s and destination in V_t
 - Backward edge of cut χ : origin in V_t and destination in V_s
- Flow $f(\chi)$ across a cut χ : total flow of forward edges minus total flow of backward edges
- Capacity $c(\chi)$ of a cut χ : total capacity of forward edges
- Example:

$$-c(\chi)=24$$

$$-f(\chi)=8$$





Flow and Cut

Lemma:

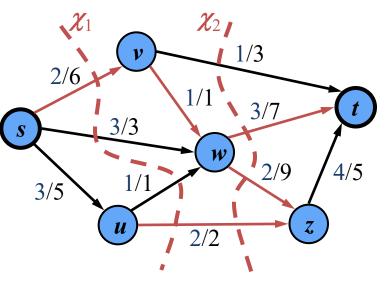
The flow $f(\chi)$ across any cut χ is equal to the flow value |f|

Lemma:

The flow $f(\chi)$ across a cut χ is less than or equal to the capacity $c(\chi)$ of the cut

Theorem:

The value of any flow is less than or equal to the capacity of any cut, i.e., for any flow f and any cut χ , we have $|f| \leq c(\chi)$



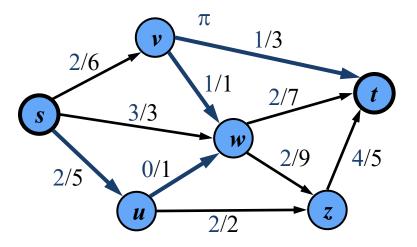
 $c(\chi_1) = 12 = 6 + 3 + 1 + 2$ $c(\chi_2) = 21 = 3 + 7 + 9 + 2$ $|\mathbf{f}| = 8$

Augmenting Path

Consider a flow f for a network N

- Let *e* be an edge from *u* to *v*:
 - Residual capacity of *e* from *u* to *v*: $\Delta_f(u, v) = c(e) - f(e)$
 - Residual capacity of e from v to u: $\Delta_f(v, u) = f(e)$
- Let π be a path from s to t
 - The residual capacity $\Delta_f(\pi)$ of π is the smallest of the residual capacities of the edges of π in the direction from *s* to *t*

A path π from s to t is an augmenting path if $\Delta_f(\pi) > 0$



 $\Delta_f(s, u) = 3$ $\Delta_f(u, w) = 1$ $\Delta_f(w, v) = 1$ $\Delta_f(v, t) = 2$ $\Delta_f(v, t) = 1$ |f| = 7

Flow Augmentation

Lemma:

Let π be an augmenting path for flow fin network N. There exists a flow f' (for N of value $|f'| = |f| + \Delta_f(\pi)$

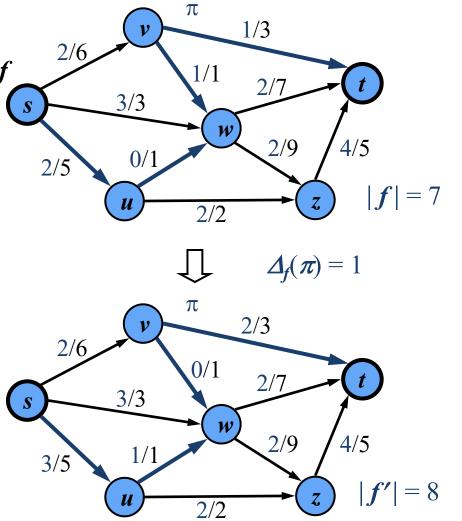
Proof:

We compute flow f' by modifying the flow on the edges of π

• Forward edge:

$$f'(e) = f(e) + \Delta_f(\pi)$$

Backward edge: $f'(e) = f(e) - \Delta_f(\pi)$



Ford-Fulkerson's Algorithm

- Initially, f(e) = 0 for each edge e
- Repeatedly
 - Search for an augmenting path π
 - Augment by $\Delta_f(\pi)$ the flow along the edges of π
- A specialization of DFS (or BFS) searches for an augmenting path
 - An edge e is traversed from u to v provided $\Delta_f(u, v) > 0$

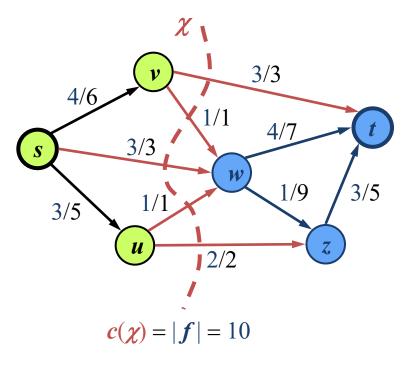
```
Algorithm FordFulkersonMaxFlow(N)
for all e \in G.edges()
   setFlow(e, 0)
 while G has an augmenting path \pi
    { compute residual capacity \Delta of \pi }
   \Delta \leftarrow \infty
   for all edges e \in \pi
       { compute residual capacity \delta of e }
      if e is a forward edge of \pi
          \delta \leftarrow getCapacity(e) - getFlow(e)
       else { e is a backward edge }
          \delta \leftarrow getFlow(e)
      if \delta < \Lambda
         \Lambda \leftarrow \delta
    { augment flow along \pi }
   for all edges e \in \pi
      if e is a forward edge of \pi
          setFlow(e, getFlow(e) + \Delta)
       else { e is a backward edge }
          setFlow(e, getFlow(e) – \Delta)
```

Max-Flow and Min-Cut

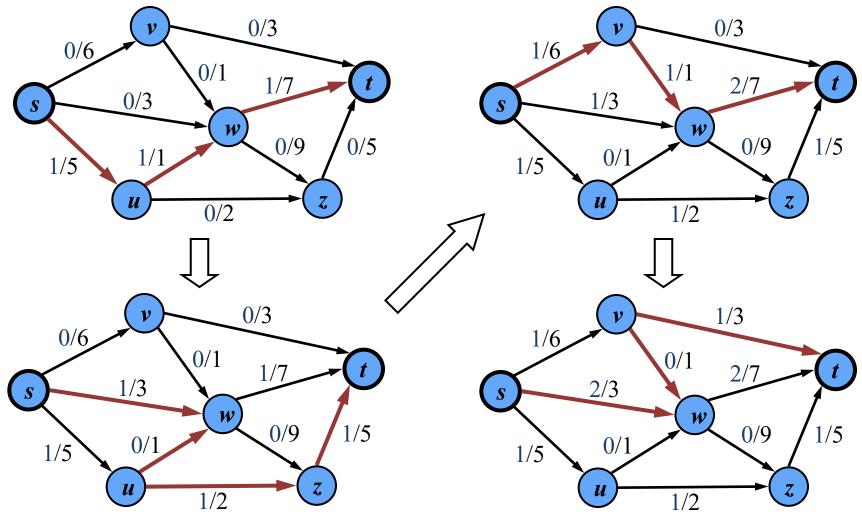
- Termination of Ford-Fulkerson's algorithm
 - There is no augmenting path from s to t with respect to the current flow f
- Define
 - V_s set of vertices reachable from s by augmenting paths
 - V_t set of remaining vertices
- Cut $\chi = (V_s, V_t)$ has capacity $c(\chi) = |f|$
 - Forward edge: f(e) = c(e)
 - Backward edge: f(e) = 0
- Thus, flow f has maximum value and cut χ has minimum capacity

Theorem:

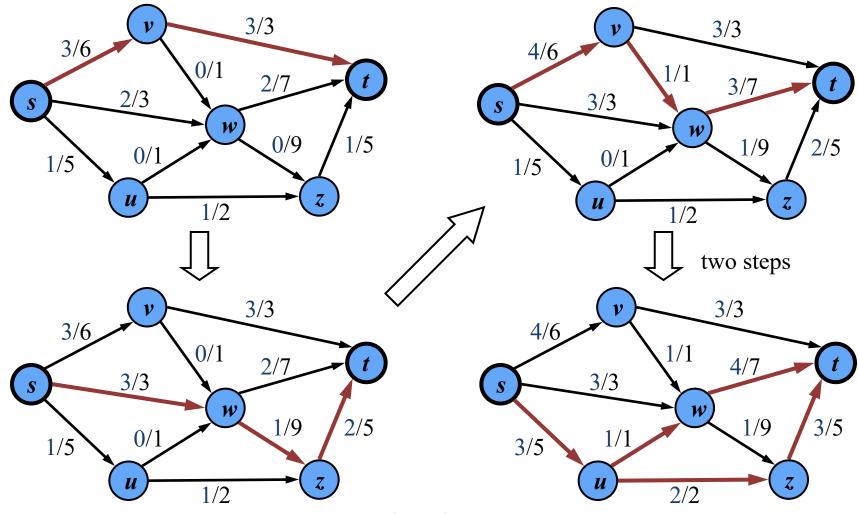
The value of a maximum flow is equal to the capacity of a minimum cut



Example (1)

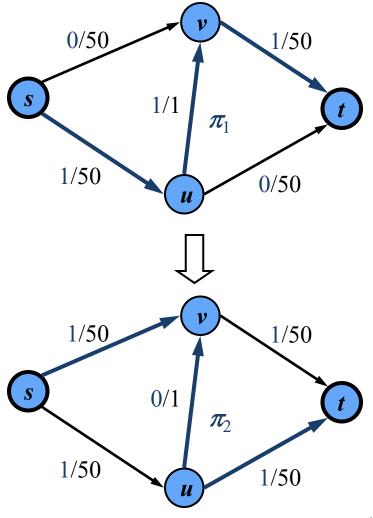


Example (2)



Analysis

- In the worst case, Ford-Fulkerson's algorithm performs |*f**| flow augmentations, where *f** is a maximum flow
- Example
 - The augmenting paths found alternate between π_1 and π_2
 - The algorithm performs 100 augmentations
- Finding an augmenting path and augmenting the flow takes O(n + m) time
- The running time of Ford-Fulkerson's algorithm is $O(|f^*|(n + m))$



Edmonds-Karp Algorithm

- A variation of the Ford Fulkerson algorithm that uses BFS to find augmenting paths
- Use a 'more' greedy choice to find good augmenting paths
 - choose an augmenting path with the smallest number of edges
- Running time is $O(nm^2)$ (proof in book)