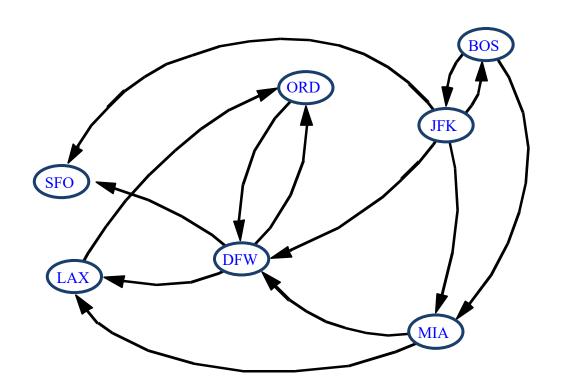
Directed Graphs



Outline and Reading

Reachability (6.4.1)

- Directed DFS
- Strong connectivity

Transitive closure (6.4.2)

• The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAGs) (6.4.4)

Topological Sorting

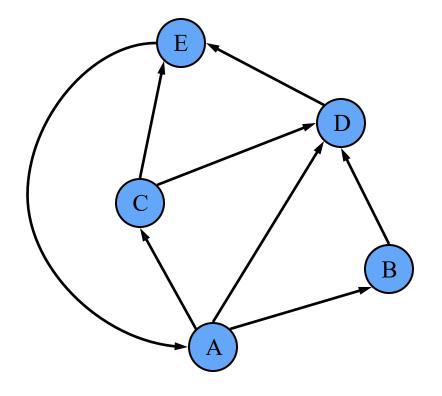
Digraphs

A **digraph** is a graph whose edges are all directed

• short for "directed graph"

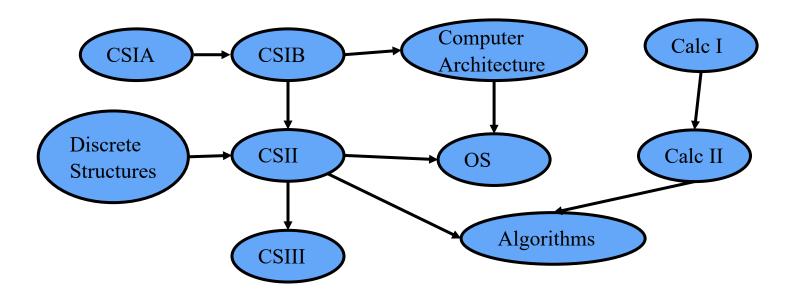
Applications

- one-way streets
- flights
- task scheduling



Digraph Application

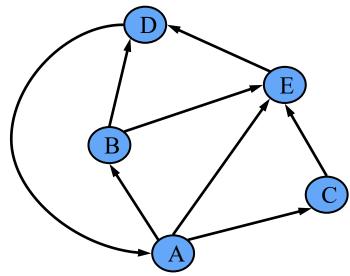
Scheduling: edge (a,b) means task a must be completed before b can be started.



Digraph Properties

A graph G = (V, E) such that

- Each edge goes in one direction
- Ex: Edge (a,b) goes from a to b, but not b to a.

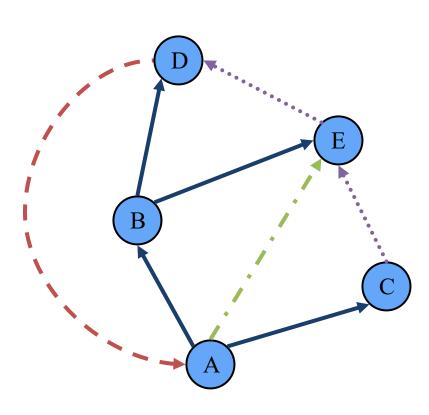


Properties:

- If G is simple, $m \le n(n-1)$.
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of the sets of in-edges and out-edges in time proportional to their size.

Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting at a vertex s
 determines the vertices reachable from s

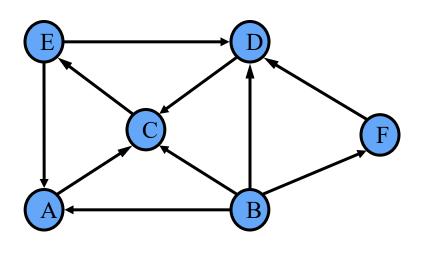


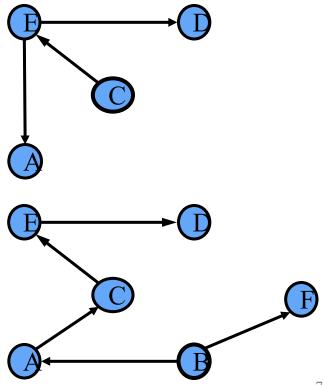
Reachability

DFS tree rooted at v: vertices reachable from v via directed paths

Applications:

- Dead code detection/elimination
- Garbage collection



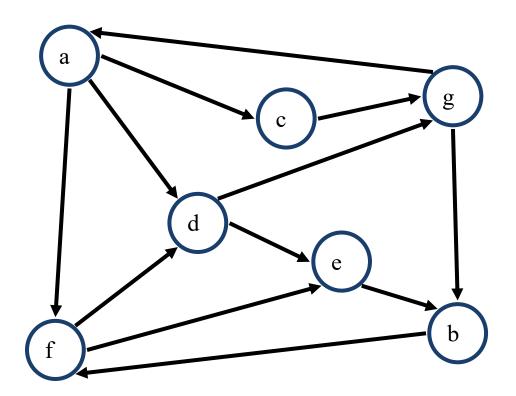


Digraphs

Strong Connectivity

Each vertex can reach all other vertices

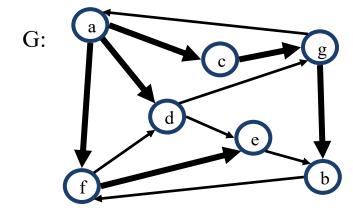
• How can we test if G is strongly connected?

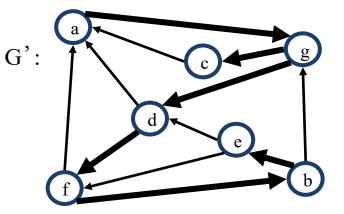


Strong Connectivity Algorithm

Determine if G is strongly connected

- Pick a vertex v in G
- Perform a DFS from v in G
 - If there's a w not visited, print "no"
- Let G' be G with edges reversed
- Perform a DFS from v in G'
 - If there's a w not visited, print "no"
 - Else, print "yes"



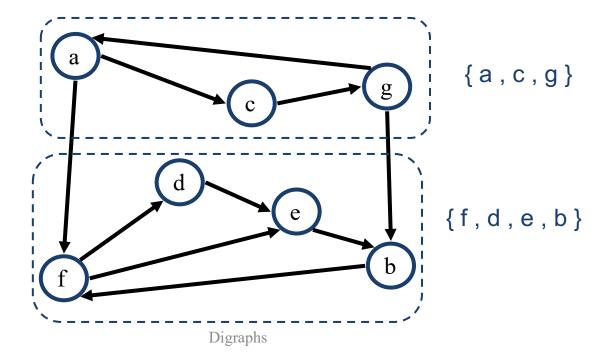


Running time: O(n+m).

Strongly Connected Components

A strongly connected component is a maximal subgraph such that each vertex can reach all other vertices in the subgraph

• Can also be done in O(n+m) time using DFS, but is more complicated (similar to biconnectivity).



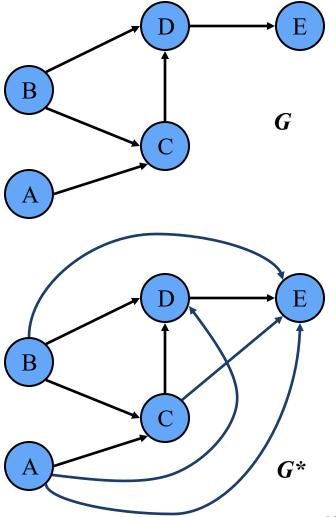
10

Transitive Closure

Given a digraph G, the transitive closure of G is the digraph G^* such that

- G* has the same vertices as G
- if G has a directed path from u to v $(u \neq v)$, G^* has a directed edge from u to v

The transitive closure provides reachability information about a digraph.

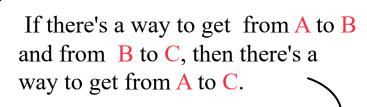


Computing the Transitive

Closure

We can perform DFS starting at each vertex

• O(n(n+m))

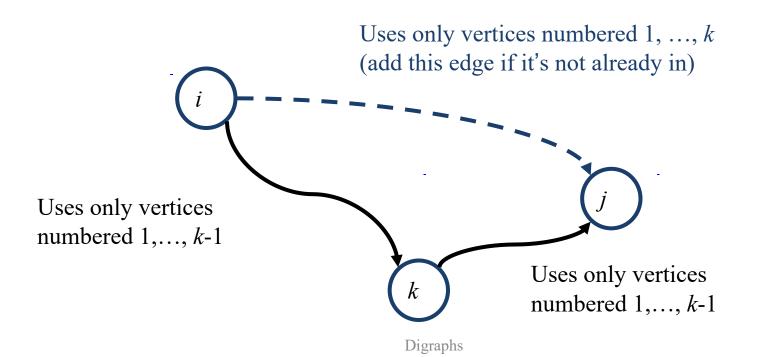


Alternatively ... Use dynamic programming:

Floyd-Warshall Algorithm

Floyd-Warshall Transitive Closure

- Idea #1: Number the vertices 1, 2, ..., *n*.
- Idea #2: Consider paths that use only vertices numbered 1, 2, ..., k, as intermediate vertices:

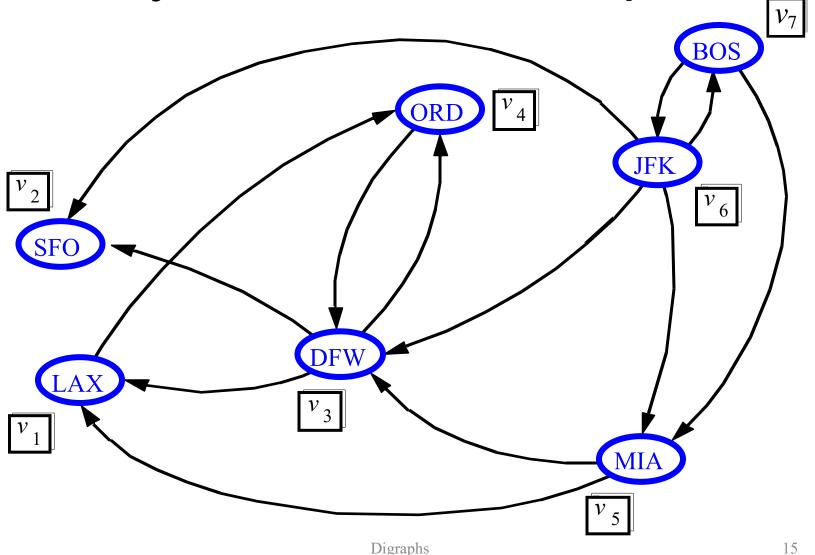


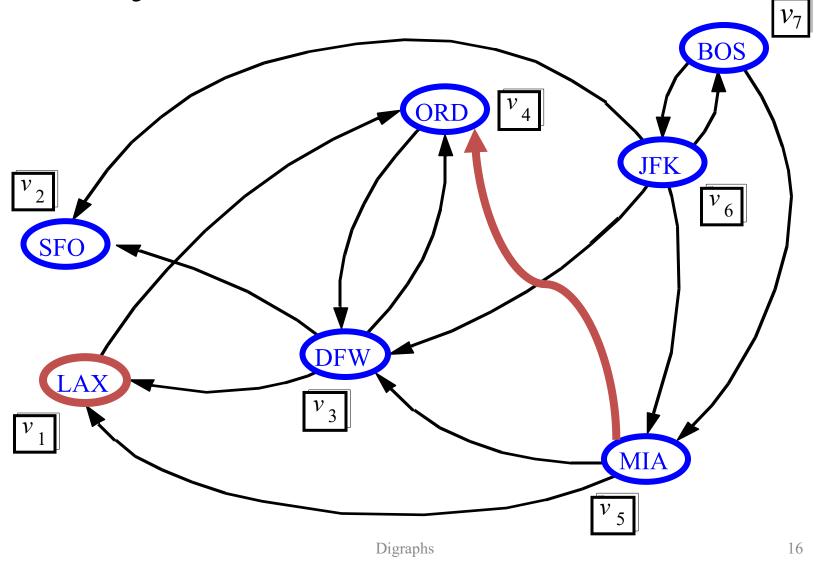
Floyd-Warshall's Algorithm

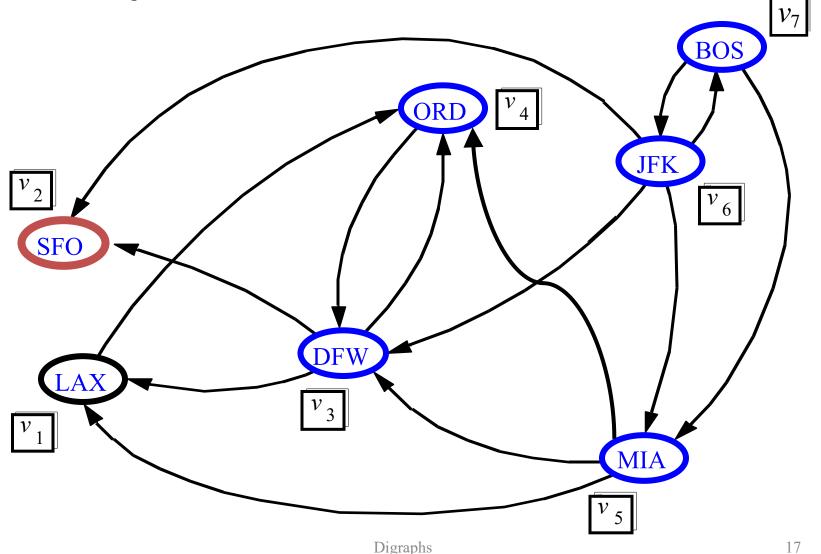
- Numbers the vertices of G as v_1 , ..., v_n and computes a series of digraphs G_0 , ..., G_n
 - $-G_0=G$
 - G_k has a directed edge (v_i, v_j) if G has a directed path from v_i to v_j with intermediate vertices in the set $\{v_1, ..., v_k\}$
- We have that $G_n = G^*$
- In phase k, digraph G_k is computed from G_{k-1}
- Running time: O(n³), assuming areAdjacent is O(1) (e.g., adjacency matrix)

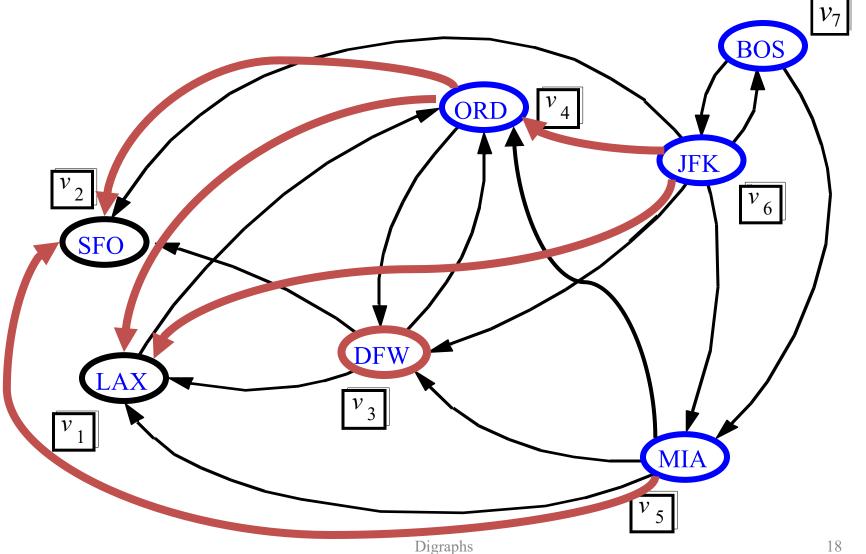
```
Algorithm FloydWarshall(G)
   Input digraph G
   Output transitive closure G* of G
   i \leftarrow 1
  for all v \in G.vertices()
      denote v as v_i
      i \leftarrow i + 1
   G_0 \leftarrow G
  for k \leftarrow 1 to n do
      G_k \leftarrow G_{k-1}
       for i \leftarrow 1 to n (i \neq k) do
         for j \leftarrow 1 to n (j \neq i, k) do
            if G_{k-1}.areAdjacent(v_i, v_k) \land
                   G_{k-1}.areAdjacent(v_k, v_i)
                if \neg G_k are Adjacent (v_i, v_i)
                    G_k.insertDirectedEdge(v_i, v_j, k)
      return G_n
```

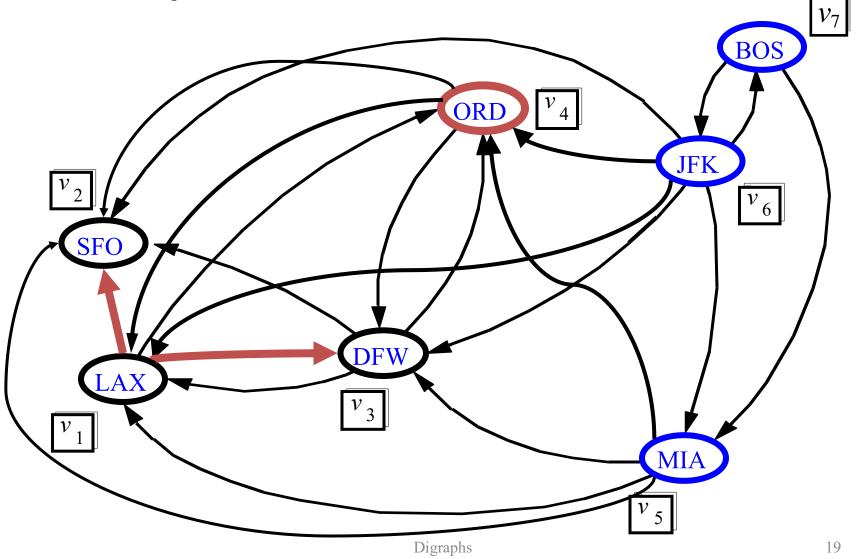
Floyd-Warshall Example

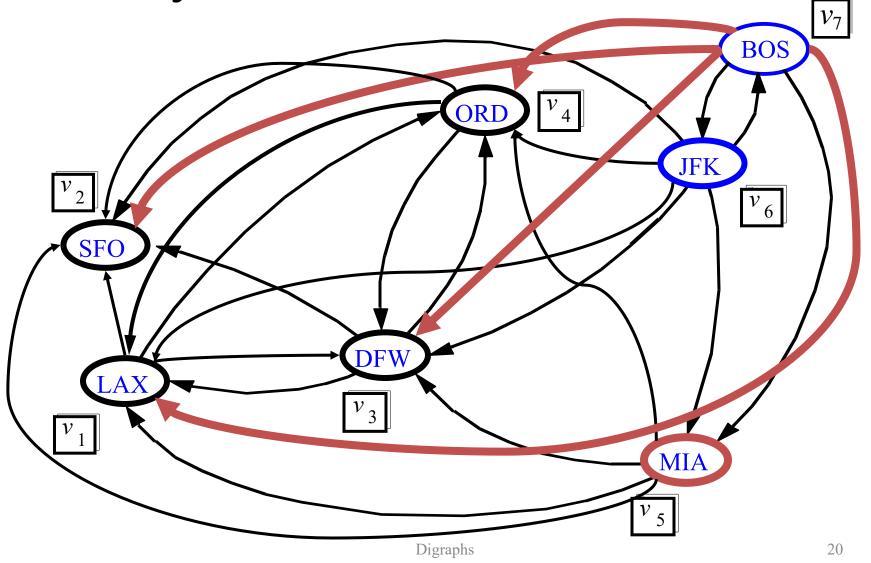


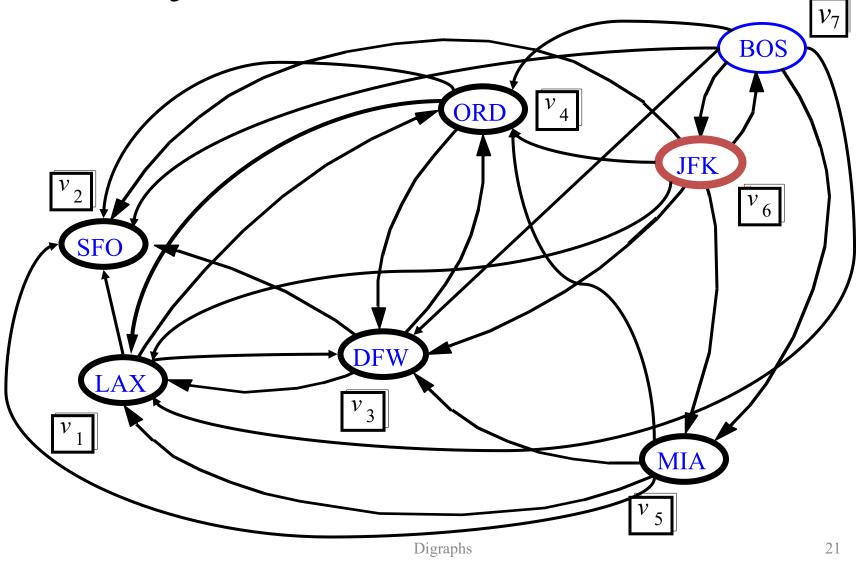




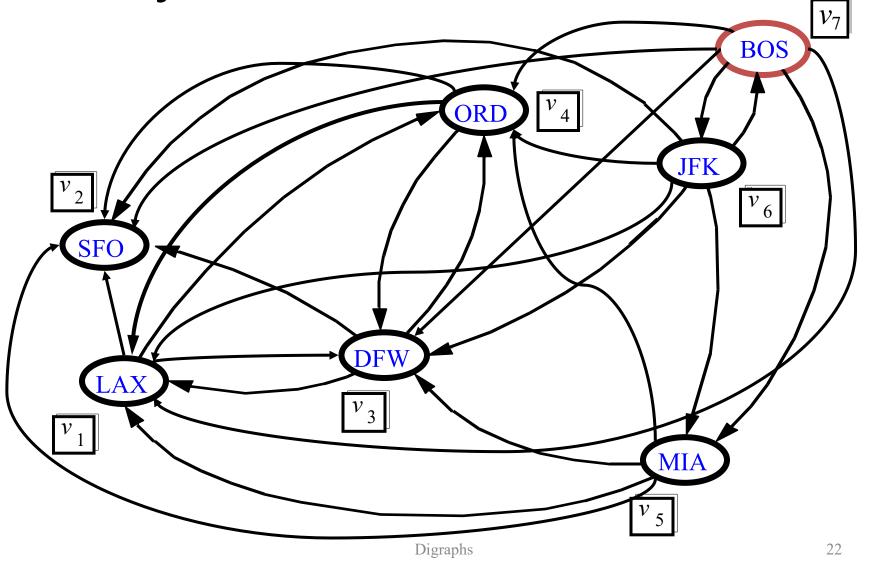








Floyd-Warshall, Conclusion



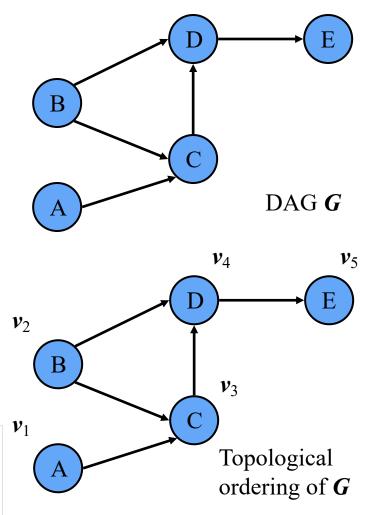
DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering $v_1, ..., v_n$ of the vertices such that for every edge (v_i, v_i) , we have i < j
- Ex: in a task scheduling digraph, a topological order is a task sequence that satisfies the precedence constraints

Theorem

A digraph admits a topological ordering if and only if it is a DAG

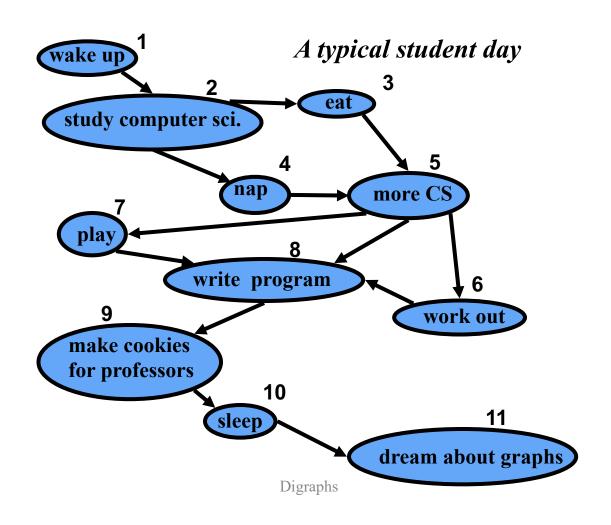
PAGE 3 DEPARTMENT	COURSE	DESCRIPTION	PREREQS	
COMPUTER SCIENCE		INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON	CPSC 432	
Science		DEPENDENCY RESOLUTION.		xkcd #754



23

Topological Sorting

Number vertices, so that (u,v) in E implies u < v



Algorithm for Topological Sorting

Note: This algorithm is different than the one in Goodrich-Tamassia

```
Method TopologicalSort(G)

H \leftarrow G // Temporary copy of G

n \leftarrow G.numVertices()

while H is not empty do

Let v be a vertex with no outgoing edges

Label v \leftarrow n

n \leftarrow n - 1

Remove v from H
```

• Running time: O(n + m). How...?

Topological Sorting Algorithm using DFS

Simulate the algorithm by using DFS

```
Algorithm topologicalDFS(G)

Input dag G

Output topological ordering of G
n \leftarrow G.numVertices()

for all u \in G.vertices()

setLabel(u, UNEXPLORED)

for all e \in G.edges()

setLabel(e, UNEXPLORED)

for all v \in G.vertices()

if getLabel(v) = UNEXPLORED

topologicalDFS(G, v)
```

• O(n+m) time.

```
Algorithm topologicalDFS(G, v)
  Input graph G and a start vertex v of G
  Output labeling of the vertices of G
    in the connected component of v
  setLabel(v, VISITED)
  for all e \in G.incidentEdges(v)
    if getLabel(e) = UNEXPLORED
       w \leftarrow opposite(v,e)
       if getLabel(w) = UNEXPLORED
         setLabel(e, DISCOVERY)
         topologicalDFS(G, w)
       else
         {e is a forward or cross edge}
  Label v with topological number n
   n \leftarrow n - 1
```

