Directed Graphs




Outline and Reading

Reachability (6.4.1)
e Directed DFS

e Strong connectivity

Transitive closure (6.4.2)
* The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAGs) (6.4.4)
* Topological Sorting



Digraphs

A digraph is a graph whose
edges are all directed

* short for “directed graph”

Applications

* one-way streets
* flights

 task scheduling




Digraph Application

Scheduling: edge (a,b) means task @ must be completed before b can be started.
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Digraph Properties

A graph G = (V] E) such that

Properties:

Each edge goes in one direction

Ex: Edge (a,b) goes from a to b, but not b to a.

If G 1s simple, m < n(n-1).

If we keep in-edges and out-edges in separate adjacency lists, we
can perform listing of the sets of in-edges and out-edges in time
proportional to their size.



Directed DFS

* We can specialize the traversal
algorithms (DFS and BFS) to digraphs
by traversing edges only along their
direction

* In the directed DFS algorithm, we have
four types of edges

— discovery edges
— back edges

— forward edges
— cross edges

* A directed DFS starting at a vertex s
determines the vertices reachable from s
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Reachabillity

DFS tree rooted at v: vertices reachable from v via directed paths

Applications:
 Dead code detection/elimination

 Garbage collection ®\C© -@
@

-

@/@




. o\
Strong Connectivity i’
Each vertex can reach all other vertices \ ‘

 How can we test if G 1s strongly connected?




Strong Connectivity
Algorithm

Determine if G 1s strongly connected

 Pickavertexvin G
 Perform a DFS fromvin G

— If there’s a w not visited, print “no”
* Let G’ be G with edges reversed

e Perform a DFS fromvin G’

— If there’s a w not visited, print “no”

— Else, print “yes”

Running time: O(n+m).



Strongly Connected
Components

A strongly connected component 1s a maximal subgraph such that each
vertex can reach all other vertices in the subgraph

* Can also be done in O(n+m) time using DFS, but 1s more complicated
(similar to biconnectivity).
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Transitive Closure

Given a digraph G, the transitive
closure of G 1s the digraph G* such
that

* G* has the same vertices as G

* 1f G has a directed path from u to v
(u #v), G* has a directed edge
from u to v

The transitive closure provides
reachability information about a
digraph.

Q

G*



Computing the Transitive

Closure

We can perform DFS
starting at each vertex

* O(n(n+m))

If there's a way to get from A to B
and from B to C, then there's a
way to get from A to C.

Alternatively ... Use dynamic
programming;:
Floyd-Warshall Algorithm
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Floyd-Warshall Transitive
Closure

e Idea #1: Number the vertices 1, 2, ..., n.

* Idea #2: Consider paths that use only vertices numbered
1,2, ..., k, as intermediate vertices:

Uses only vertices numbered 1, ..., &
(add this edge if it's not already in)

_— o o
" ey

Uses only vertices
numbered 1,..., k-1

Uses only vertices
numbered 1,..., k-1
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Floyd-Warshall’ s Algorithm

Numbers the vertices of G as v,
..., ¥, and computes a series of
digraphs G, ..., G,
— G=G
— G has a directed edge (v;, v))
if G has a directed path from

v; to v; with intermediate
vertices in the set {v, ..., v;}

We have that G, = G*

In phase k, digraph G, is
computed from G}, _,

Running time: O(n?), assuming
areAdjacent 1s O(1) (e.g.,
adjacency matrix)

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
1<« 1
for all v € G.vertices()
denote v as v;
I«—i+1
Gy« G
for k< 1 ton do
Gy < Gy,
fori< 1 ton (i =k)do
forj <« 1 ton (j #i k)do
if G _,.areAdjacent(v;, v;) A
Gy _.areAdjacent(vy, v))
if —Gy.areAdjacent(v; v))
Gi.insertDirectedEdge(v;, v;, k)
return G,
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Floyd-Warshall Example




Floyd-Warshall, Iteration 1




Floyd-Warshall, Iteration 2




Floyd-Warshall, lteration 3




Floyd-Warshall, Iteration 4




Floyd-Warshall, Iteration 5




Floyd-Warshall, Iteration 6




Floyd-Warshall, Conclusion




DAGs and Topological Ordering

* A directed acyclic graph (DAG) 1s a
digraph that has no directed cycles
* Atopological ordering of a digraph is a

numbering v, ..., v, of the vertices such
that for every edge (v;, v;), we have i <j

* EX: in a task scheduling digraph, a
topological order is a task sequence that
satisfies the precedence constraints

Theorem
A digraph admits a topological ordering if
and only if it is a DAG
FPAGE 3
DEPARTMENT COURSE DESCRIPTON PREREQS
COMPUTER CPSC 432 | INTERMEDIATE COMPLER | CPSC 432
SCIENCE DESIGN, WITH A FOCUS ON
| DEPENDENCY RESOLUTION.

Topological
ordering of G
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Topological Sorting

Number vertices, so that («,v) in E implies u <v

1 A typical student day

2 3
—-C_eat )

study computer sci.
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write program 6
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Algorithm for Topological Sorting

* Note: This algorithm 1s different than the one in Goodrich-Tamassia

Method TopologicalSort(G)

H < G // Temporary copy of G

n < G.numVertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label v < n
n<—n-1
Remove v from H

* Running time: O(n + m). How...?
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Topological Sorting
Algorithm using DFS

Simulate the algorithm by using DFS

Algorithm zopological DFS(G, v)
Input graph G and a start vertex v of G

Algorithm zopological DFS(G)
Input dag &

n < G.numVertices()

for all u € G.vertices()
setLabel(u, UNEXPLORED)

for all ¢ € G.edges()
setLabel(e, UNEXPLORED)

for all v € G.vertices()

topological DFS(G, v)

Output topological ordering of G

Output labeling of the vertices of G
in the connected component of v

setLabel(v, VISITED)
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w <— opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
topological DFS(G, w)

if getLabel(v) = UNEXPLORED else

{e 1s a forward or cross edge}

*  O(n+m) time.

Label v with topological number n
n<n-1
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Topological Sorting Example




Topological Sorting Example
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