Quick Sort

Quick Sort

A sorting algorithm based on the
divide-and-conquer paradigm
* Divide: pick a pivot element x and
partition § into
— L elements less than x

— E elements equal to x

— G elements greater than x

 Recur: sort L and G Y
* Conquer: join L, E and G

The choice of the pivot affects the
algorithm’s performance.

1.
2.

Partition

Remove each element y from §

Insert y into L, E or G, depending on the
result of the comparison with the pivot x

Each insert/remove takes O(1) time.

Thus, the partition step of quick-sort
takes O(n) time.

Algorithm partition(S, x)
Input sequence S, pivot element x
Output subsequences L, E, G
L, E, G < empty sequences
while —S.isEmpty()
y < S.remove(S.first())
if y<x
L.insertLast(y)
elseif y=x
E.insertLast(y)
else { y>x}
G.insertLast(y)
return ., F, G

The choice of the pivot affects the performance of Quick Sort.

Quick Sort

Quick-Sort Tree

An execution of quick-sort depicted by a binary tree

* Each node represents a recursive call of quick-sort and stores
— Unsorted sequence before the execution and its pivot
— Sorted sequence at the end of the execution

e The root is the initial call

* The leaves are calls on subsequences of size 0 or 1

Quick Sort Execution

» Strategy: Select the last element as the pivot

Quick Sort

Quick Sort Execution

» Strategy: Select the last element as the pivot

* Select pivot, partition, recursive call

Quick Sort

Quick Sort Execution

» Strategy: Select the last element as the pivot

* Select pivot, partition, recursive call

Quick Sort

Quick Sort Execution

» Strategy: Select the last element as the pivot

 Join

Quick Sort

Quick Sort Execution

» Strategy: Select the last element as the pivot

Quick Sort

Quick Sort Execution

» Strategy: Select the last element as the pivot

10

Quick Sort Execution

» Strategy: Select the last element as the pivot

11

Quick Sort Execution

» Strategy: Select the last element as the pivot

12

Quick Sort Execution

» Strategy: Select the last element as the pivot

13

Worst-case Running Time

Occurs when the pivot is the unique minimum or maximum element
* One of L and G has size n — 1 and the other has size 0
* The running time 1s proportional to the sum: n+(n-1)+...+2+1

» If we use the strategy of selecting the last element as the pivot, this happens when
the list 1s already sorted!

Thus, the worst-case running time of quick-sort is O(n?)

depth time
0 n |]
1 n-1] []

Quick Sort 14

Randomized Quick Sort

Pivot selection strategy: choose a random element as the pivot
e Still has worst-case running time O(n?)

— Due to random selection, this case 1s highly unlikely
* Expected running time 1s O(nlogn)

(749672 5 246779 |

/

[42 S 24 (797 > 779

=t &=

Expected Running Time

Consider a recursive call of quick-sort on a sequence of size s
* Good call: the sizes of L and G are each less than 3s/4
* Bad call: one of L and G has size greater than 3s/4

(123456789101112131415) (123456789101112131415 |
(1234567) 910111213 14 15 1] [3456789101112131415 |
Good call Bad call

A call 1s good with probability 1/2
* 1/2 of the possible pivots cause good calls:

[1234 5678910111213141516]

\ J \\ ~ A

Bad pivots Good pivots Bad pivots

Expected Running Time
(continued)

Probabilistic Fact: The expected number of coin tosses required in order to get k
heads 1s 2k.

For a node of depth i, we expect
* i/2 ancestors are good calls
* size of the input sequence for the current call is at most (3/4)"’n

For a node of depth 2log,sn

expected height time per level

* the expected input size is one T (0

» the expected height of the quick-sort
tree 1s O(logn)

The amount of work done at the nodes O(log n)
of the same depth is O(n)

Thus, the expected running time of
quick-sort is O(nlogn) v

total expected time: O(n log n)
Quick Sort 17

In-Place Quick-Sort

During the partition step, use replace operations to rearrange elements of the input
sequences such that:

* elements less than pivot have rank < A
* elements equal to pivot have rank between [, k]

* eclements greater than pivot have rank > k

Algorithm inPlaceQuickSort(S, I, r)
Input sequence S, ranks / and r

Output sequence S with the
elements of rank between / and r
rearranged in increasing order

ifl>r

return
i « arandom integer between / and r
x < S.elemAtRank(i)
(h, k) < inPlacePartition(x)
inPlaceQuickSort(S, I, h — 1)
inPlaceQuickSort(S, k + 1, r)

18

In-Place Partition

Performs a partitioning using two indices to split S into L and £ U G (a similar
method can split £ U G into £ and G).

Repeat until 4 and £ cross:

* Scan /4 to the right until it finds an element > x
* Scan £ to the left until it finds an element < x

* Swap elements at indices /# and &

19

Summary of Sorting Algorithms

Algorithm Time Notes
in-place, not stable
selection-sort O(n? ' :
I ' () @ slow (good for small inputs)
@ in-place, stable
insertion-sort O(n? ' :
HISEH ' () @ slow (good for small inputs)
—_— # in-place, not stable
quick-sort (n log m) @ randomized
expected _
fast (good for large inputs)
in-place, not stable
heap-sort O(n log n) P

fast (good for large inputs)
@.

not in-place, stable
merge-sort O(n log n) # sequential data access
fast (good for huge inputs)

Other: Nuts and Bolts

You are given a collection of n bolts of different widths, and »
corresponding nuts.

* You can test whether a given nut and bolt fit together, from which

you learn whether the nut 1s too large, too small, or an exact match
for the bolt.

* The differences in size between pairs of nuts or bolts are too small to
see by eye, so you cannot compare the sizes of two nuts or two bolts
directly.

* You are to match each bolt to each nut.

Give an efficient algorithm to solve the nuts and bolts problem.

Quick Sort 21

