
Design and Analysis of Algorithms: Homework 5

1. (5 points) Would you prefer DFS or BFS (or both equally) for the following tasks? Justify your
answer. Assume the graph is undirected.

(a) Determine if the graph is acyclic.

(b) Find a path to a vertex known to be near the starting vertex.

(c) Find the connected components of the graph.

2. (5 points) A graph is triconnected if one has to remove at least 3 vertices from the graph to disconnect
it. Construct examples of the following graphs or explain why it cannot be done. Assume the graph
is undirected.

(a) A triconnected graph with exactly 5 vertices and 8 edges.

(b) A triconnected graph with exactly 5 vertices and 6 edges.

(c) A triconnected graph with exactly 8 vertices and 14 edges.

3. (10 points) Trace the execution of TopologicalSort algorithm (as given on page 326) on the following
graph. Show the graph after each iteration of the while loop, and display the incounter and the currently
assigned topological sorting labels at each one of these iterations.

To review, here is the pseudo-code for the algorithm:

Input: A digraph G with n vertices
Output: A topological ordering v1, v2, ...vn of G
1: function TopologicalSort(G)
2: Let S be an initially empty stack
3: for each vertex u of G do
4: Let incounter(u) be the in-degree of u
5: if incounter(u) = 0 then
6: S.push(u)

7: i← 1
8: while S is not empty do
9: u← S.pop()
10: Let u be vertex number i in the topological ordering
11: i← i + 1
12: for each outgoing edge e = (u,w) of u do
13: incounter(w)← incounter(w)− 1
14: if incounter(w) = 0 then
15: S.push(w)

16: if i > n then
17: return v1, v2, ...vn
18: else
19: return ”digraph G has a directed cycle”



4. (a) (5 points) Give an example of a weighted directed graph G with negative-weight edges, but
no negative-weight cycle, such that Dijkstra’s algorithm incorrectly computes the shortest-path
distances from some vertex v. Trace the execution of Dijkstra’s algorithm to show where it goes
awry.

(b) (5 points) Consider the following greedy strategy for finding a shortest path from vertex start to
vertex goal in a given connected graph.

1. Initialize path to start

2. Initialize visitedV ertices to {start}
3. If start = goal, return path and exit. Otherwise, continue.

4. Find the edge (start, v) of minimum weight such that v is adjacent to start and v is not in
visitedV ertices.

5. Add v to path.

6. Add v to visitedV ertices.

7. Set start equal to v and go to step 3.

Does this greedy strategy always find a shortest path from start to goal? Either explain intuitively
why it works, or give a counter-example.

5. (10 points) Suppose you are given a diagram of a telephone network, which is a graph G whose
vertices represent switching centers, and whose edges represent communications lines between two
centers. The edges are marked by their bandwidth. The bandwidth of a path is the bandwidth of its
lowest bandwidth edge. Give the pseudocode for an algorithm that, given a diagram and two switching
centers a and b, will output the maximum bandwidth of a path between a and b. (Just report the
maximum bandwidth; you do not have to give the actual path). Analyze the running time of your
algorithm.

6. (UNGRADED) In this problem, you will show the execution of the minimum spanning tree algo-
rithms that you studied in class on the following graph:

(a) Trace the execution of Prim’s algorithm to find the minimum spanning tree for this graph. At
each step, you should show the vertex and the edge added to the tree and the resulting values of
D after the relaxation operation. Use START vertex as the first vertex in your traversal.

(b) Trace the execution of Kruskal’s algorithm to find the minimum spanning tree for this graph.
Give a list of edges in the order in which they are added to the MST.

7. (UNGRADED) NASA wants to link n stations spread over the country using communication chan-
nels. Each pair of stations has a different bandwidth available, which is known a priori. NASA wants
to select n− 1 channels (the minimum possible) in such a way that all the stations are linked by the
channels and the total bandwidth (defined as the sum of the individual bandwidths of the channels) is
maximum. Give the pseudo-code for an efficient algorithm for this problem and determine its worst-
case time complexity. Consider the weighted graph G = (V,E), where V is the set of stations and E

Page 2



is the set of channels between the stations. Define the weight w(e) of an edge e ∈ E as the bandwidth
of the corresponding channel.

8. (UNGRADED) Trace the execution of the Edmonds-Karp maximum flow algorithm on the graph
shown below. To break ties during BFS, visit the edges for each vertex in order. Show the augmenting
path chosen in each step (and the flow of that path), as well as the final flow for each edge and the
value of the maximum flow.

Page 3


