
Design and Analysis of Algorithms: Homework 3

1. (a) (4 points) Insert into an initially empty binary search tree items with the following keys (in this
order): 30, 40, 23, 58, 48, 26, 11, 13. Draw the tree after all insertions. Include a few intermediate
stages.

(b) (4 points) Remove from the binary search tree in Figure 3.7(a) the following keys (in this order):
32, 65, 76, 88, 97. Draw the tree after each removal.

(c) (2 points) A different binary search tree results when we try to insert the same sequence into an
empty BST in a different order. Give an example of this with at least 5 elements and show the
two different binary search trees that result.

2. (a) (5 points) Let T be a binary search tree, and let x be a key. Give an efficient algorithm for finding
the smallest key y in T such that y > x. Note that x may or may not be in T . Explain why your
algorithm has the running time it does.

(b) (5 points) Give the pseudocode for a nonrecursive linear-time algorithm that prints out the
keys from a binary search tree in order. You can assume the existence of a O(1)-time print(key)
function.

3. (a) (5 points) Consider the following sequence of keys: (18, 30, 50, 12, 1). Insert the items with this
set of keys in the order given into the red-black tree in the figure below. Draw the tree after each
insertion.

(b) (5 points) Design and give the pseudocode for an O(log n) algorithm that determines whether
a red-black tree with n keys stores any keys within a certain (closed) interval. That is, the input
to the algorithm is a red-black tree T and two keys, l and r, where l ≤ r. If T has at least one
key k such that l ≤ k ≤ r, then the algorithm returns true, otherwise it returns false. Hint: You
can use the TreeSearch algorithm (page 146) as a subroutine.

4. (a) (5 points) Draw the merge-sort tree for an execution of the merge-sort algorithm on the input
sequence: (2, 5, 16, 4, 10, 23, 39, 18, 26, 15) (like in Figure. 4.2).

(b) (5 points) Draw the quick-sort tree for an execution of the quick-sort algorithm on the input
sequence from part (a) (like in Figure 4.12). Use the last element as the pivot.

(c) (5 points) Draw the quick-sort tree for an execution of the quick-sort algorithm on the input
sequence from part (a) (like in Figure 4.12). Use the element at rank bn

2
c as the pivot.

(d) (2 points) What is the running time of the version of quick-sort in part (c) on a sequence that is
already sorted? Explain.

5. (a) (5 points) Suppose we are given a sequence S of n elements, each of which is colored red or blue.
Assuming S is represented by an array, give a linear-time in-place algorithm for ordering S so
that all the blue elements are listed before all the red elements. What is the running time of your
method?



(b) (5 points) Let A and B be two sequences of n integers each. Give an integer m, describe an
O(n log n) time algorithm for determining if there is an integer a in A and an integer b in B such
that m = a + b.

6. (a) (5 points) Suppose we are given a sequence S of n elements, each of which is an integer in the
range [0, n2−1]. Describe a simple method for sorting S in O(n) time. [Hint : think of alternative
ways of viewing the elements].

(b) (3 points) Does the running time of radix-sort depend on the order of keys in the input? Explain.

Page 2


