Maximum Flow

Outline and Reading

Flow networks
* Flow (8.1.1)
 Cut(8.1.2)

Maximum flow

* Augmenting path (8.2.1)

 Maximum flow and minimum cut (8.2.1)
* Ford-Fulkerson’s algorithm (8.2.2-8.2.3)
* Edmond Karp’s algorithm (8.2.4)

Flow Network

A flow network (or just network) /N consists of

* A weighted digraph G with nonnegative integer edge weights, where the
weight of an edge e 1s called the capacity ¢(e) of e

* Two distinguished vertices, s and ¢ of G, called the source and sink,
respectively, such that s has no incoming edges and ¢ has no outgoing edges.

Example:

Flow

A flow ffor a network NV is is an assignment of an integer values f{e) to each
edge e that satisfies the following properties:

— Capacity rule: for each edge e, 0 < f'(e) < c(e)
— Conservation rule: for each vertex v #s,¢ Z f(e)= Z f(e)

ecE™ (v) ecE" (v)
where E~(v) and E*(v) are the incoming and outgoing edges of v, resp.

e The value of a flow f, denoted |f], 1s the total flow from the source, which is
the same as the total flow into the sink

Example:

Maximum Flow 4

Maximum Flow

A flow for a network NV 1s said to be
maximum if its value is the largest of all

flows for N

1/3
2/6

The maximum flow problem consists of
finding a maximum flow for a given
network NV

2/2
Flow of value8=2+3+3=1+3+4

Applications
— Traffic movements
— Freight transportation
— Maximum matching

— Image segmentation

2/2
Maximum flow of value 10=4+3+3=3+3+4

Cut

A cut of a network /N with source s and sink #

1s a partition y = (V,, V) of the vertices of NV
such thats € V and ¢t € V,

— Forward edge of cut y: origin in ¥, and
destination in V,

— Backward edge of cut #: origin in V, and
destination in V¥

Flow f(y) across a cut y: total flow of forward
edges minus total flow of backward edges

Capacity c(y) of a cut y: total capacity of
forward edges

Example:
— c(x)=24
- fin)=8

Maximum Flow

Flow and Cut

Lemma:

The flow f{y) across any cut y is equal to
the flow value [f]

Lemma:

The flow f{¥) across a cut y is less than or
equal to the capacity c(y) of the cut

) 22\
Theorem: ’ !
The value of any flow is less than or equal fr)=2+3+1+2=8
to the capacity of any cut, i.e., for any flow fp)=1+3+2+2=38
fand any cut , we have |f] < c(y) Ifl =8

c(y)=6+3+1+2=12
cp)=3+7+9+2=21

Maximum Flow 7

Augmenting Path

Consider a flow ffor a network N

* Letebe an edge from u to v:
— Residual capacity of e from u to v:
A(u, v) = c(e) — f (e)
— Residual capacity of e from v to u:

A(v, u) = f(e)

* Let #be a path from s to ¢

— The residual capacity A(x) of zis Afs,u) =3
the smallest of the residual A(u,w) = 1
capacities of the edges of 7z in the A(w,v) =1
direction from s to ¢ A(nt) =2

A(m) =1
fl=7

A path 7 from s to ¢ is an augmenting path if A(7z) > 0

Maximum Flow

Flow Augmentation

Lemma:

Let 7 be an augmenting path for flow f
in network . There exists a flow f”
for V of value

=11+ A7)
~&) |f1=7
Proof:
A7) =
We compute flow f’by modifying the @ {(7)

flow on the edges of
* Forward edge:
f(e)=fle) + A(7)
* Backward edge:
f7(e)=fle) - A(n)

Maximum Flow 9

Ford-Fulkerson’ s Algorithm

Initially, fle) = O for each edge e
Repeatedly

— Search for an augmenting path z
— Augment by A4 x) the flow
along the edges of
A specialization of DFS (or BFS)
searches for an augmenting path

— An edge e 1s traversed from u to
v provided Adu, v) > 0

Algorithm FordFulkersonMaxFlow(N)
for all ¢ € G.edges()
setFlow(e, 0)
while G has an augmenting path 7z
{ compute residual capacity 4 of 7 }
A ©
for all edges e € 7
{ compute residual capacity dof e }
if e 1s a forward edge of 7
O < getCapacity(e) — getFlow(e)
else { e 1s a backward edge }
0 < getFlow(e)
ifo<A
A« 0o
{ augment flow along 7z }
for all edges e € 7
if e 1s a forward edge of 7
setFlow(e, getFlow(e) + A)
else { e 1s a backward edge }
setFlow(e, getFlow(e) — A)

Maximum Flow 10

Max-Flow and Min-Cut

Termination of Ford-Fulkerson’s Theorem:
algorithm The value of a maximum flow is
— There is no augmenting path from s to ¢ equal to the capacity of a
with respect to the current flow f minimum cut
Define

Vi set of vertices reachable from s by
augmenting paths

V, set of remaining vertices
Cut ¥y = (V,V,) has capacity

c(x) = |f

— Forward edge: fle) = c(e)

— Backward edge: fle) =0
Thus, flow fhas maximum value and cut
7z has minimum capacity

() =|f]=10

Maximum Flow 11

Example (1)

0/3

Maximum Flow

1/2
ﬂ ﬂ two steps

Analysis

In the worst case, Ford-Fulkerson s
algorithm performs |[f*| flow
augmentations, where f* is a maximum
flow

Example

— The augmenting paths found alternate
between 7 and

— The algorithm performs 100
augmentations

Finding an augmenting path and
augmenting the flow takes O(n + m) time

The running time of Ford-Fulkerson’ s
algorithm 1s O(|f*|(n + m))

Edmonds-Karp Algorithm

A variation of the Ford Fulkerson algorithm that uses BFS to find
augmenting paths

Use a ‘more’ greedy choice to find good augmenting paths
— choose an augmenting path with the smallest number of edges

Running time is O(nm?) (proof in book)

