Selection

Selection Problem

Given an integer k and n elements x,, X,, ..., X,, taken from a
total order, find the k-th smallest element 1n this set.

Of course, we can sort the set in O(n log n) time and then
index the k-th element.

— Ex when k=3:
5,10,6,3,14,12,2 = 2,3,5,6, 10, 12, 14

Can we solve the selection problem faster?

Quick-Select

A randomized selection algorithm based on the prune-and-search
paradigm:

* Prune: pick a random element x (called pivot) and partition .§' into
— L elements less than x
— E elements equal x
— G elements greater than x

* Search: depending on £, either answer 1s in E, or we need to recurse
in either L or G

> g
\ IR U B\ y
& Y Y Y

L E

G
k> |L|+|E|
k<|L| 1

k’=k-|L|-|E|
IL| <k <|L|+|E]|
(done) 3

Partition

We partition an input sequence as in | Algorithm partition(S, p)

the quick-sort algorithm: Input sequence S, position p of pivot

, Output subsequences L, E, G of the
* Remove, in turn, each element y elements of S less than, equal to,

from .S and or greater than the pivot, resp.
L, E, G < empty sequences

X < S.remove(p)

* Insertyinto L, E or G, depending
on the result of the comparison

. . E.insertLast(x)
with the pivot x while —S.isEmpty()
y < S.remove(S.first())
Each insertion and removal takes O(1) ity <),C
. L.insertLast(y)
time :
elseif y=x
E.insertLast(y)
Thus, the partition step of quick-select else { y>x |
takes O(n) time G.insertLast(y)

return ., F, G

Selection 4

Quick-Select Visualization

An execution of quick-select can be visualized by a recursion path

* each node represents a recursive call of quick-select, and stores & and the
remaining sequence

Selection 5

Expected Running Time

Consider a recursive call of quick-select on a sequence of size s
* Good call: the sizes of L and G are each less than 3s/4
* Bad call: one of L and G has size greater than 3s/4

(123456789101112131415) (123456789101112131415 |
(1234567) 910111213 14 15 1] (3456789101112131415 |
Good call Bad call

A call 1s good with probability 1/2
* 1/2 of the possible pivots cause good calls:

[1234 5678910111213141516]

\ J \\ ~ A

Bad pivots Good pivots Bad pivots

Expected Running Time (2)

Probabilistic Fact #1: The expected number of coin tosses required in
order to get one head is two.

Probabilistic Fact #2: Expectation 1is a linear function:
— EX+Y)=EX)+EW)
— E(cX)=cEX)

Let T(n) denote the expected running time of quick-select.
* By Fact #2,
— 1(n) < T(3n/4) + bn*(expected # of calls before a good call)
* By Fact #1,
— T(n) <T(3n/4) + 2bn
* That s, 7(n) is a geometric series:
— T(n) <2bn + 2b(3/4)n + 2b(3/4)*n + 2b(3/4)*n + ...
* So 1(n) 1s O(n).
Randomized quick-select runs in O(n) expected time.

Deterministic Selection

We can do selection in O(n) worst-case time.

Main idea: recursively use the selection algorithm itself to find a good
pivot for quick-select

* Divide S into #n/5 sets of 5 each

* Find a median in each set

 Recursively find the median of the “baby” medians.
* Use median of medians as a guaranteed good pivot

Min size
for L

Min size
for G

See Exercise C-4.24 for details of analysis.

Selection

