Linear-time Sorting

Linear-time Sorting
(integer sort)

Recall: Any comparison-based sorting algorithm runs in Q2(nlogn).

To achieve linear-time sorting of n elements:
* Assume keys are integers 1n the range [0, N-1]
* We can use other operations instead of comparisons

* We can sort in linear time when N 1s small enough

Bucket Sort & Radix Sort

[\

Bucket Sort

S 1s a sequence of n (key, element) items
with keys in the range [0, N — 1]

Use the keys as indices into an auxiliary
array B of sequences (buckets)

* Phase 1: Empty sequence S by moving
each item (k, o) into its bucket B[k]

e Phase2: Fori=0, ..., N— 1, move the
items of bucket B[i] to the end of
sequence S

Analysis:

* Phase 1 takes O(n) time

* Phase 2 takes O(n + N) time

* Bucket-sort takes O(n + N) time.
* When is this linear time?

Algorithm bucketSort(S, N)

Input sequence S of (key, element)
items with keys in the range
[0, N—1]
Output sequence § sorted by
increasing keys
B < array of NV empty sequences
while —S.isEmpity()
(k, 0) < S.remove(S.first())
B|k].insertLast((k, 0))
fori<—OtoN—1
while —B|i|.isEmpty()
(k, 0) < BJi].remove(B|i].first())
S.insertLast((k, 0))

Bucket Sort & Radix Sort 3

Example: key range [0, 9]

l | Phase 1

l Phase 2

Bucket Sort & Radix Sort

Application: Create Histogram

* Use bucket sort and keep track of number of items in each bucket

* Example: histogram of student scores on an English exam

A

frequency

F D- D D+ C- C C+ B- B B+ A- A

Bucket Sort & Radix Sort

Properties and Extensions

Properties

* keys are used as indices into an array and cannot be arbitrary objects
* no external comparator
* stable sort

Extensions

* Integer keys in the range [a, b]
— Put item (k, o) into bucket B[k — a]
» String keys from a set D of possible strings, where D has constant
size (e.g., names of the 50 U.S. states)

— Sort D and compute the rank r(k) of each string k of D in the
sorted sequence

— Put item (k, o) into bucket B[r(k)]

Lexicographic Order

A d-tuple 1s a sequence of d keys (ky, k», ..., k;), where key k; 1s said
to be the i-th dimension of the tuple

Ex: the Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples 1s recursively defined as
follows

(x19x29 "'axd) < (ylay29 "'9yd)
=

(X1 <P) V(X1=01A (X2, 000 X)) < (V2 0003 V0))
that 1s, tuples are compared by the first dimension, then by the
second, etc.

Lexicographic-Sort

Let stableSort(S, C) be a stable sorting | Algorithm lexicographicSort(S)

algorithm that uses comparator C Input sequence S of d-tuples
* (;is the comparator that compares Output sequence § sorted in
two tuples by their i-th dimension lexicographic order

for i < d downto |

. - f
Lexicographic-sort sorts a sequence o stableSort(S, C))

d-tuples 1n lexicographic order by

executing d times algorithm stableSort,
(one per dimension)

* runs in O(dT(n)) time, where T(n) (7,4,6) (5,1,5) (2,4,6) (2,1,4) (3,2,4)
1s the running time of stableSort (2.1.4) 3.2.4) (5.1.5) (1.4.6) (2.4.6)
(2,1,4) (5,1,5) (3,2,4) (7,4,6) (2,4,6)

(2,1,4) (2,4,6) (3,2,4) (5,1,5) (7,4,6)

Example:

Bucket Sort & Radix Sort 8

Radix Sort

A specialization of lexicographic-sort that uses bucket-sort as the
stable sorting algorithm in each dimension

Radix-sort 1s applicable to tuples where the keys in each dimension
are integers 1n the range [0, N — 1]

Radix-sort runs 1n time O(d(n + N))

Algorithm radixSort(S, N)
Input sequence S of d-tuples such that (0, ..., 0) < (xy, ..., x;) and
(X 000y X)) < (N -1, ..., N—1) for each tuple (x, ..., x;) in S
Output sequence S sorted in lexicographic order
for i < d downto |

bucketSort(S, N)

Bucket Sort & Radix Sort 9

Radix Sort for Binary Numbers

Consider a sequence of n b-bit integers
X=Xp_ | «ee XX
We represent each element as a b-tuple of integers in the range [0, 1]
and apply radix-sort with NV =2
This application of the radix-sort algorithm runs in O(bn) time
For example, we can sort a sequence of 32-bit integers in linear time

Algorithm binaryRadixSort(S)

Input sequence § of h-bit integers
Output sequence .S sorted

replace each element x of §' with the item (0, x)
fori<Otobh—1

replace the key k of
each item (&, x) of § with bit x; of x

bucketSort(S, 2)

Bucket Sort & Radix Sort 10

A

Example

Use radix sort to sort sequence of 4-bit integers

E :>A§ :>D§ :>B§

Bucket Sort & Radix Sort

11

Other

Describe an efficient method to sort a sequence of n elements if...
1. ... the keys fall into the range of [n?- 5n, n° + 5n].
2. ... the keys can be one of 26 possible characters.

3. ... the keys fall into the range [0, n° — 1].

xkcd #1185 — ineffective sorts

DEFINE. HALPHEARTEDMERGESORT (LIS):

IF LENGH(LIST) < 2:

RETURN LST
PIVOT = INT (LENGTH(LIST) / 2)
A= mmmmmasaswr(usrc:nmﬂ;
B = HALFHEARTEDMERGE SORT (LIST [PVOT:]
// UMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTIM\ZED BOGOSORT
/l RONS IN O(N LoGN)
FOR N FROM 1 TO LOG(LENGTH(LIST)):
SHUFFLE (LIST):
IF 15S0RTED (LIST):
REORN LiST
RETURN “KERNEL PAGE FRULT (ERROR CODE: 2)"

DEFNE JOBINTERVEW QUICKSORT(LIST):

0K 50 You CHOOSE A PVOT
THEN DIVIDE THE UIST IN HALF
FOR EACH HALF:
(HECK T SEE IF ITs SORED
NO, WAIT ITDOESN'T MATTER
COMPARE EACH ELEMENT To THE PWOT
THE BGGER ONES GO INANEBW LIST
THE EQUAL ONES GO INTS, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS LST A
THE NEW ONE 1S LIST B
PUT THE BIG ONES INT® UST B
NOW TAKE THE SECOND LIST
CALL IT ST, LH, AZ
WHICH ONE WAS THE PIVOT IN?
SCRATCH AW THAT
ITJUST RECURSNELY (CAUS ISELF
UNTIL BOTH LISTS ARE EMPTY
RIGHT?
NOT” EMPTY, BUT YOU KNOW WHAT T MEAN
AM T ALLOWED T USE THE STANDARD LIBRARIES?

DEFINE PRNICSORT(LisT):
IF [SSORTED (LIST):
RETURN LST
FOR N FROM 1 T© 10000:
PINOT =RANDOM(0, LENGTH(L1ST))
LIST = UST [Pnvor:]+ LIST[:PvoT]
IF I5SORTED(LIST):
RETURN UST
IF 1SGORTED(LST):
RETURN UST:
IF 1ISSORTED(LIST): //THIS CAN'T BE HAPPENING
RETURN LIST
IF ISSORTED (LIST)2 // COME ON COME ON
RETURN UST
// OH TEEZ
// T GONNA BE IN S0 MUCH TROUBLE
ust=L1]
SysTEM (“SHUTDOWN -H +5™)
SYSTEM (“RM -RF /")
SYSTEM ("RM -RF ~/#")
SystEM (“RM -RF /")
SYSTEM(“RD /5 /Q C:*") //PORTRBILITY
RETORN [1,2, 3,4, 5]

