## Unordered

## Ordered Dictionaries



## Ordered Dictionaries

- Keys are ordered
- Perform usual dictionary operations (insertItem, removeItem, findElement) and maintain an order relation for the keys
- we use an external comparator for keys
- New operations:
- closestKeyBefore $(k)$, closestElemBefore( $k$ )
- closestKeyAfter( $k$ ), closestElemAfter( $k$ )
- A special sentinel, NO_SUCH_KEY, is returned if no such item in the dictionary satisfies the query


## Binary Search

- Items are ordered in a sorted sequence
- Find an element $k$



## Binary Search

- Items are ordered in a sorted sequence
- Find an element $k$
- After checking a key $j$ in the sequence, we can tell if item with key $k$ will come before or after it

- Which item should we compare against first? The middle


## Binary Search: Find $k=52$

Algorithm BinarySearch(S, k, low, high):
if low $>$ high then return $N O_{-} S U C H \_K E Y$
mid $\leftarrow\lfloor($ low + high $) / 2\rfloor$
if $k e y$ (mid) $=k$ then return elem(mid)
if $k e y$ (mid) $<k$ then return BinarySearch(S, $k$, mid +1 , high)
if $k e y($ mid $)>k$ then return BinarySearch $(S, k$, low, mid -1$)$


## Binary Search: Find $k=52$

Algorithm BinarySearch(S, k, low, high):
if low $>$ high then return $N O_{-} S U C H \_K E Y$
mid $\leftarrow\lfloor($ low + high $) / 2\rfloor$
if $k e y($ mid $)=k$ then return elem(mid)
if $k e y$ (mid) $<k$ then return BinarySearch(S, $k$, mid +1 , high)
if $k e y($ mid $)>k$ then return BinarySearch $(S, k$, low, mid -1$)$


## Binary Search: Find $k=52$

Algorithm BinarySearch(S, k, low, high):
if low $>$ high then return $N O_{-} S U C H \_K E Y$
mid $\leftarrow\lfloor($ low + high $) / 2\rfloor$
if $k e y($ mid $)=k$ then return elem(mid)
if $k e y$ (mid) $<k$ then return BinarySearch(S, $k$, mid +1 , high)
if $k e y($ mid $)>k$ then return BinarySearch $(S, k$, low, mid -1$)$


## Binary Search: Find $k=52$

Algorithm BinarySearch(S, k, low, high):
if low $>$ high then return $N O_{-} S U C H \_K E Y$
mid $\leftarrow\lfloor($ low + high $) / 2\rfloor$
if $k e y($ mid $)=k$ then return elem(mid)
if $k e y$ (mid) $<k$ then return BinarySearch(S, $k$, mid +1 , high)
if $k e y($ mid $)>k$ then return BinarySearch $(S, k$, low, mid -1$)$


## Binary Search

Algorithm BinarySearch(S, k, low, high):
if low $>$ high then return $N O \_S U C H \_K E Y$
mid $\leftarrow\lfloor($ low + high $) / 2\rfloor$
if $k e y($ mid $)=k$ then return elem(mid)
if $k e y$ (mid) $<k$ then return BinarySearch(S, $k$, mid +1 , high)
if $k e y($ mid $)>k$ then return BinarySearch $(S, k$, low, mid -1$)$

Each successive call to BinarySearch halves the input, so the running time is $\boldsymbol{O}(\boldsymbol{\operatorname { l o g } \boldsymbol { n }})$

## Lookup Table

- A dictionary implemented by means of an array-based sequence which is sorted by key
- why use an array-based sequence rather than a linked list?
- Performance:
- insertItem takes $\boldsymbol{O}(\boldsymbol{n})$ time to make room by shifting items
- removeItem takes $\boldsymbol{O}(\boldsymbol{n})$ time to compact by shifting items
- findElement takes $\boldsymbol{O}(\log \boldsymbol{n})$ time, using binary search
- Effective only for
- small dictionaries, or
- when searches are the most common operations, while insertions and removals are rarely performed


## Binary Search Tree

- A binary search tree is a binary tree where each internal node stores a (key, element)-pair, and
- each element in the left subtree is smaller than the root
- each element in the right subtree is larger than the root
- the left and right subtrees are binary search trees
- An inorder traversal visits items in ascending order



## BST - Insert( $k, v$ )

- Idea
- find a free spot in the tree and add a node which stores that item ( $k, v$ )
- Strategy
- start at root $r$
- if $k<\operatorname{key}(r)$, continue in left subtree
- if $k>\operatorname{key}(r)$, continue in right subtree
- Runtime is $O(\boldsymbol{h})$, where $\boldsymbol{h}$ is the height of the tree


## BST - Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20.


## BST - Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20.


## BST - Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20.


## BST - Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20.


## BST - Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20.


## BST - Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20.


## BST - Insert Example

Insert the numbers $22,80,18,9,90,20$.


## BST - Find

- Find the node with key $k$
- Strategy
- start at root $r$
- if $k=\operatorname{key}(r)$, return $r$
- if $k<\operatorname{key}(r)$, continue in left subtree
- if $k>\operatorname{key}(r)$, continue in right subtree
- Runtime is $O(h)$, where $h$ is the height of the tree


## BST - Find Example

Find the number 20


## BST - Delete

- Delete the node with key $k$
- Strategy: let $n$ be the position of FindElement $(k)$
- Remove $n$ without creating "holes" in the tree
- Case 0: $n$ has two children with external nodes
- Case 1: $n$ has a child which is an internal node
- Case 2: $n$ has two children with internal nodes
- Runtime is $O(h)$, where $h$ is the height of the tree


## BST - Delete Example

Case 0: $n$ has two children which are external nodes


Delete 9

## BST - Delete Example

Case 0: $n$ has two children which are external nodes


Delete 9

## BST - Delete Example

Case 1: $n$ has a child which is an internal node


Delete 80

## BST - Delete Example

Case 1: $n$ has a child which is an internal node


Delete 80

## BST - Delete Example

Case 2: $n$ has two children which are internal nodes
Find the first internal node $m$ that follows $n$ in an inorder traversal Replace $n$ with $m$


## BST - Delete Example

Case 2: $n$ has two children which are internal nodes
Find the first internal node $m$ that follows $n$ in an inorder traversal Replace $n$ with $m$


Delete 18

## BST Performance

Space used is $\mathrm{O}(n)$
Runtime of all operations is $O(h)$

- What is $h$ in the worst case?

Consider inserting the sequence $1,2, \ldots, n-1, n$


Worst case height $h \in O(n)$.

- How do we keep the tree balanced?


## Dictionary: Worst-case Comparison

|  | Unordered |  | Ordered |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Log <br> file | Hash table | Lookup table | Binary Search Tree | Balanced Trees |
| size, isEmpty | $O(1)$ | $O(1)$ | $O(1)$ | $O(1)$ | $O(1)$ |
| keys, elements | $O(\mathrm{n})$ | $O(\mathrm{n})$ | $O(\boldsymbol{n})$ | $O(\boldsymbol{n})$ | $O(\boldsymbol{n})$ |
| findElement | $O(\mathrm{n})$ | $O(\boldsymbol{n})^{* *}$ | $O(\log n)$ | $O(\boldsymbol{h})$ | $O(\log \boldsymbol{n})$ |
| insertItem | $O(1)$ | $O(\boldsymbol{n})^{* *}$ | $O(\boldsymbol{n})$ | $O(\boldsymbol{h})$ | $O(\log n)$ |
| removeElement | $O(\mathrm{n})$ | $O(\boldsymbol{n})^{* *}$ | $O(\boldsymbol{n})$ | $O(\boldsymbol{h})$ | $O(\log n)$ |
| closestKey closestElem | $O(\mathrm{n})$ | $O(\boldsymbol{n})$ | $O(\log n)$ | $O(\boldsymbol{h})$ | $O(\log n)$ |
| ** Expected running time is $O(1)$ |  |  |  |  |  |

## Other

- You are given two sorted integer arrays $A$ and $B$ such that no integer is contained twice in the same array. $A$ and $B$ are nearly identical. However, $B$ is missing exactly one number. Find the missing number in $B$.
- You are given a sorted array $A$ of distinct integers. Determine whether there exists an index $i$ such that $\mathrm{A}[i]=i$.

