
CS 4/56101
Design & Analysis of Algorithms

• Course Website:
– http://www.cs.kent.edu/~hmichaud/daa-f18/

• Instructor: Heather M. Guarnera
– Office: MSB 352
– Email: hmichaud@kent.edu (Piazza is better)
– Office Hours: TR 2:30–3:30, or by appointment
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Books
• Textbook:
Algorithm Design: Foundations, Analysis, and 
Internet Examples, by Michael T. Goodrich and 
Roberto Tamassia, 1st edition, Wiley, 2001

• An excellent reference:
Introduction to Algorithms, 3rd Edition, by T.H. 
Cormen, C.E. Leiserson, R.L. Rivest, and C. 
Stein, MIT, 2009. 
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Academic Presence Verification
• Due to federal rules, instructors “must verify that students 

begin attendance in each course for which they are registered.” 

• Required to receive federal financial aid. 

• Attendance sheet
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Course Requirements
• Homework 40%

– Good preparation for exams
– Homework is weighted based on different problems

• Exams
– Midterm 30% Oct. ??, during class
– Final 30% Wed Dec. 12, 12:45-3:00pm

• Exam Instructions:
– Closed book
– One handwritten sheet (one side) allowed

4



Example: Boss assigns a task
• Given today’s prices of pork, grain, sawdust, etc…
• Given constraints on what constitutes a hotdog.
• Make the cheapest hotdog.

• Mundane programmer: “Um? Tell me what to code.”
• Better: “I learned an algorithm that will work.”
• Best: “I can develop an algorithm for you.”

Every industry asks these questions.

How to do this?
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Design & Analysis of Algorithms
• Advanced data structures and their analysis

– Time/space complexity for data structure operations
• Up to date grasp of fundamental problems and solutions

– How to evaluate algorithms (correctness, complexity)
• Principles and techniques to solve the vast array of unfamiliar 

problems that arise in a rapidly changing field
– Notations and abstractions for describing algorithms
– Approaches to solve

• To think algorithmically like a ‘real’ computer scientist
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Course Content
• A list of algorithms

– Learn the code
– Trace them until you are convinced that they work
– Implement them.

class InsertionSortAlgorithm extends SortAlgorithm
{

void sort(int a[]) throws Exception {
for (int i = 1; i < a.length; i++) {

int j = i;
int B = a[i];
while ((j > 0) && (a[j-1] > B)) {

a[j] = a[j-1];
j--; }

a[j] = B;
}}
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Course Content
• A survey of algorithmic design techniques
• Abstract thinking
• How to develop new algorithms for any problem that may 

arise

8



Start With Some Math

Input Size

T
im

e
Classifying Functions

f(i) = nQ(n)

Recurrence Relations

T(n) = a T(n/b) + f(n)

Adding Made Easy

∑i=1 f(i).

Time Complexity

t(n) = Q(n2)
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Data Structures

Trees & Heaps
Hash Tables & Dictionaries
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Searching & Sorting

Binary Search Tree Red Black Trees

Sorting
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Fundamental Techniques

Greedy Algorithms Divide and Conquer

Dynamic Programming
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Graph Algorithms

Network FlowsGraph Search

Shortest Path
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Text Processing
Pattern Matching
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Useful Learning Techniques
• You are expected to read ahead (before the lecture)

– This will facilitate more productive discussion during class

• Practice explaining
– You’ll be tested on your ability to explain material

• Ask questions
– Why is it done this way and not that way?

• Guess at potential algorithms for solving a problem
– Look for input instances where your algorithm is wrong
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