
CS 4/56101
Design & Analysis of Algorithms

• Course Website:
– http://www.cs.kent.edu/~hmichaud/daa-f18/

• Instructor: Heather M. Guarnera
– Office: MSB 352
– Email: hmichaud@kent.edu (Piazza is better)
– Office Hours: TR 2:30–3:30, or by appointment

1

http://www.cs.kent.edu/~hmichaud/daa-f18/
mailto:hmichaud@kent.edu


Books
• Textbook:
Algorithm Design: Foundations, Analysis, and 
Internet Examples, by Michael T. Goodrich and 
Roberto Tamassia, 1st edition, Wiley, 2001

• An excellent reference:
Introduction to Algorithms, 3rd Edition, by T.H. 
Cormen, C.E. Leiserson, R.L. Rivest, and C. 
Stein, MIT, 2009. 

2



Academic Presence Verification
• Due to federal rules, instructors “must verify that students 

begin attendance in each course for which they are registered.” 

• Required to receive federal financial aid. 

• Attendance sheet

3



Course Requirements
• Homework 40%

– Good preparation for exams
– Homework is weighted based on different problems

• Exams
– Midterm 30% Oct. ??, during class
– Final 30% Wed Dec. 12, 12:45-3:00pm

• Exam Instructions:
– Closed book
– One handwritten sheet (one side) allowed

4



Example: Boss assigns a task
• Given today’s prices of pork, grain, sawdust, etc…
• Given constraints on what constitutes a hotdog.
• Make the cheapest hotdog.

• Mundane programmer: “Um? Tell me what to code.”
• Better: “I learned an algorithm that will work.”
• Best: “I can develop an algorithm for you.”

Every industry asks these questions.

How to do this?

5



Design & Analysis of Algorithms
• Advanced data structures and their analysis

– Time/space complexity for data structure operations
• Up to date grasp of fundamental problems and solutions

– How to evaluate algorithms (correctness, complexity)
• Principles and techniques to solve the vast array of unfamiliar 

problems that arise in a rapidly changing field
– Notations and abstractions for describing algorithms
– Approaches to solve

• To think algorithmically like a ‘real’ computer scientist

6



Course Content
• A list of algorithms

– Learn the code
– Trace them until you are convinced that they work
– Implement them.

class InsertionSortAlgorithm extends SortAlgorithm
{

void sort(int a[]) throws Exception {
for (int i = 1; i < a.length; i++) {

int j = i;
int B = a[i];
while ((j > 0) && (a[j-1] > B)) {

a[j] = a[j-1];
j--; }

a[j] = B;
}}

7



Course Content
• A survey of algorithmic design techniques
• Abstract thinking
• How to develop new algorithms for any problem that may 

arise

8



Start With Some Math

Input Size

T
im

e
Classifying Functions

f(i) = nQ(n)

Recurrence Relations

T(n) = a T(n/b) + f(n)

Adding Made Easy

∑i=1 f(i).

Time Complexity

t(n) = Q(n2)

9



Data Structures

Trees & Heaps
Hash Tables & Dictionaries

10



Searching & Sorting

Binary Search Tree Red Black Trees

Sorting

11



Fundamental Techniques

Greedy Algorithms Divide and Conquer

Dynamic Programming

12



Graph Algorithms

Network FlowsGraph Search

Shortest Path

13



Text Processing
Pattern Matching

14



Useful Learning Techniques
• You are expected to read ahead (before the lecture)

– This will facilitate more productive discussion during class

• Practice explaining
– You’ll be tested on your ability to explain material

• Ask questions
– Why is it done this way and not that way?

• Guess at potential algorithms for solving a problem
– Look for input instances where your algorithm is wrong

15


