This is given:

Invalmen dimen 	sion 30		A1 35×15 2 0	Az 15x1		A35×10	<u>A</u> 10×20 - - -	A. 20	5 x25	do d1 d2 d3 d4 d4 d4	5 10 20		it costs	nothing	s only one matrix, to multiply since ly provided.
A- A-	Az 351 Az 15 Az 51	5-15- 15 5-5 = 2 5-10= 7 0-20 = 1 20-25= 9	625 750 100()												Itiplying two s together
		1 15750 0	2	3 750 0	4 1000 0	5	-	K 0 1 2 3 4 5			2	3	4	5	
	1 1,Az = n	ain Z [if	- A ₆ (A, F - (A ₆ A)·A	- 	0 15750		5 + 30 + 30		 = 78= = 180		=0 =1		S		Aultiplying three ces together
			2 7875 2625 0	3 750 0	4 1000 0	5	-	K 0 1 2 3 4 5			2 0	3	3	5 4	Note we record k[0][2]=0 because (highlighted in green above), the minimum number that we recorded in N[0][2] came when we did the last multiplication at matrix A_0.
A1 N 0 1 2 3 4 5		1 15750 :	A, (Az (A, Az) 2 7875 2625 0		0 262 4 1000 0	+79			0	6000 4375 0	k=1 k=2 2 1		4	5	k[1][2]=2 because (highlighted in green above), the minimum number that we recorded in N[1][3] came wher we did the last multiplication at matrix A_0

$i=2$ $A_z A_3 A_4$ min $\frac{2}{3} (A_2) (A_3 A_4)$ $0 + 1000 + 15 \cdot 5 \cdot 20 = 2500$ $k=2$ $j=4$ $(A_2 A_3) (A_4)$ $750 + 0 + 15 \cdot 10 \cdot 20 = 3750$ $k=3$
i=3 AzAyAz min $i=3$ (Az) (AyAz) 0+5000 + 5 · 10 · 25 = 6250 k=3 j=5 (AzAy) (Az) 1008 + 0 + 5 · 20 · 25 = 3500 k=4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$j=2$ $A_2A_3A_4A_5$ $j=5$ M_1n $A_2A_3A_4A_5$ $0+3500$ $+$ $15\cdot 5\cdot 25 = 5375$ $k=2$ M_1n $A_2A_3A_4A_5$ $750+5000$ $+$ $15\cdot 10\cdot 25 = 9500$ $k=3$ $A_2A_3A_4A_5$ $2500+0$ $+$ $15\cdot 20\cdot 25 = 10000$ $k=4$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $

И	0	1 1	2	3	4	5		ĸ	0	1	[2
0	0	15750	7875	9375	11875			0		Ο	
		0	2625	4375	7125	10500	-				
2			0	750	2500	5375		2			
3				0	1000	3500		3			
9					0	5000		<u> </u>			
5						0	•	5			
-											

0=) 5 تر	min	Ao A, Az A s Ay As Ao A, Az A s Ay As
-------------	-----	--

0+10500	+ 30 · 35 · 25 = 36750	k=0
15750 + 5375	+30·15·25 = 32375	k=1
7875+3500	+30·5·25 = 15125	k=2
9375 + 5000	+30.10.25 = 21875	k=3
11875 + 0	+30.20.25 = 26875	k=4

Step 6. Multiplying six matrices together

1		1	r	1 ·)	١
Ν	0	1	2	3	4	5
0	0	15750	7875	9375	11875	15125
		0	2625	4375	7125	10500
2			0	750	2500	5375
3				0	1000	3500
4					0	5000
5						0
			•			

. . . .

ĸ	0	1	2	3	4	5
0		0	0	2	2	2
			1	2	Z	2
2				2	2	Z
43					Ś	4
4						4
5						
			•			

4

2

z

2

3

3

1

2

2

2

5

2

Z

<u>Ч</u> Ч

Finished building N table (left). It says that the minimum number of scalar operations it will take to multiply these 6 matrices together is 15125. The k table (right) explains how the chain of matrices was parenthesized which minimized the number of scalar operations. Interpreting the k-table gives the solution

 $((A_0) \times (A_1 \times A_2)) \times ((A_3 \times A_4) \times (A_5))$

k[0][5] determines the last multiplication, effectively splitting the chain of matrices into to large matrices from A_0...A_2 on the left and A_3...A_5 on the right.

k[0][2] describes how to multiply the left chain (from A_0...A_2)

k[3][5] describes how to multiply the right chain (from A_3...A_5)