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Separation Edges and Vertices

Let G be a connected graph

* A separation edge of G 1s an edge whose removal disconnects G.
Ex: (DFW,LAX) is a separation edge

* A separation vertex of G is a vertex whose removal disconnects G.
Ex: DFW, LGA and LAX are separation vertices

Applications:

* Separation edges and vertices represent single points of failure in a
network and are critical to the operation of the network.
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Biconnected Graph

Equivalent definitions of a biconnected graph G:
* Graph G has no separation edges and no separation vertices.

* For any two vertices u and v of G, there are two disjoint simple paths
between u and v (1.e., two simple paths between u and v that share no
other vertices or edges).

* For any two vertices u and v of G, there 1s a simple cycle containing u
and .




Biconnected Components

* Biconnected component of a graph G
— A maximal biconnected subgraph of G, or
— A subgraph consisting of a separation edge of G and its end vertices

* Interaction of biconnected components
— An edge belongs to exactly one biconnected component
— A nonseparation vertex belongs to exactly one biconnected component
— A separation vertex belongs to two or more biconnected components

* Example of a graph with four biconnected components:




Equivalence Classes

Given a set S, a relation R on S is a set of ordered pairs of elements of S, 1.e., R is a
subset of xS

* An equivalence relation R on § satisfies the following properties
Reflexive: R(x.x) is true for each x
Symmetric: R(x,y) = R(y.x) for each x,y

Transitive: R(x,y) A R(y,z) — R(x,z) for each x,y,z

* An equivalence relation R on § induces a partition of the elements of S into
equivalence classes

Example (connectivity relation among the vertices of a graph):
* Let Vbe the set of vertices of a graph G

* Define the relation
C = {(v,w) € VxV such that G has a path from v to w}

* Relation C1s an equivalence relation

* The equivalence classes of relation C are the vertices in each connected
component of graph G



Link Relation

Edges e and f of connected graph G are
linked if

e e=f,or
* G has a simple cycle containing e and f

Theorem: The link relation on the edges of a . .
graph is an equivalence relation. Equivalence classes of linked edges:

{a} {b9 C’ d’ e’f} {g7 i’ j}
Proof Sketch:

* The reflexive and symmetric properties
follow from the definition

* For the transitive property, consider two
simple cycles sharing an edge




Link Components

The link components of a connected graph G are the equivalence classes of edges
with respect to the link relation

A biconnected component of G 1s the subgraph of G induced by an equivalence
class of linked edges

* A separation edge is a single-element equivalence class of linked edges

* A separation vertex has incident edges in at least two distinct equivalence
classes of linked edge
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Auxiliary Graph
Auxiliary graph B for a connected graph G

e Associated with a DFS traversal of G
* The vertices of B are the edges of G

* For each back edge e of G, B has edges (e,f,), (e.f>) , ..., (e.fp),
where f,, f,, ..., f;, are the discovery edges of G that form a simple cycle with e

The connected components of B correspond to the link components of G
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Auxiliary Graph (cont.)

In the worst case, the number of edges of the auxiliary graph 1s
proportional to nm.

DFS on graph G Auxiliary graph B
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An Algorithm to Compute
Biconnected Components

Perform DFS traversal on G
Compute auxiliary graph B
Compute connected components of B

A

For each connected component of B, output vertices of B (edges of G) as
a link component of G

Running time 1s O(nm). Why?
Can we do better?
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Proxy Graph

Algorithm proxyGraph(G)
Input connected graph G
Output proxy graph F for G
F < empty graph
DFS(G, s) { s is any vertex of G}
for all discovery edges e of G
EinsertVertex(e)
setLabel(e, UNLINKED)
for all vertices v of G in DFS visit order
for all back edges e = (u,v)
FEinsertVertex(e)
repeat {add edges to F only as necessary}
f < discovery edge with dest. u
EinsertEdge(e,f,D)
if F.getLabel(f) = UNLINKED
setLabel(f, LINKED)
u < origin of edge f
else
u < v { ends the loop }
until # =v
return /- a

Proxy graph F
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Proxy Graph (cont.)

Proxy graph F for a connected graph G

* Spanning forest of the auxiliary graph B
* Has m vertices and O(m) edges

* Can be constructed in O(n + m) time

* Its connected components (trees)

correspond to the the link components
of G

Given a graph G with n vertices and m
edges, we can compute the following in
O(n+m) time

* The biconnected components of G
* The separation vertices of G

* The separation edges of G a

Proxy graph F
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