Biconnectivity

Outline and Reading

Definitions (6.3.2)

Separation vertices and edges
Biconnected graph
Biconnected components
Equivalence classes

Linked edges and link components

Algorithms (6.3.2)

Auxiliary graph
Proxy graph

Separation Edges and Vertices

Let G be a connected graph

* A separation edge of G 1s an edge whose removal disconnects G.
Ex: (DFW,LAX) is a separation edge

* A separation vertex of G is a vertex whose removal disconnects G.
Ex: DFW, LGA and LAX are separation vertices

Applications:

* Separation edges and vertices represent single points of failure in a
network and are critical to the operation of the network.

Biconnectivity

Biconnected Graph

Equivalent definitions of a biconnected graph G:
* Graph G has no separation edges and no separation vertices.

* For any two vertices u and v of G, there are two disjoint simple paths
between u and v (1.e., two simple paths between u and v that share no
other vertices or edges).

* For any two vertices u and v of G, there 1s a simple cycle containing u
and .

Biconnected Components

* Biconnected component of a graph G
— A maximal biconnected subgraph of G, or
— A subgraph consisting of a separation edge of G and its end vertices

* Interaction of biconnected components
— An edge belongs to exactly one biconnected component
— A nonseparation vertex belongs to exactly one biconnected component
— A separation vertex belongs to two or more biconnected components

* Example of a graph with four biconnected components:

Equivalence Classes

Given a set S, a relation R on S is a set of ordered pairs of elements of S, 1.e., R is a
subset of xS

* An equivalence relation R on § satisfies the following properties
Reflexive: R(x.x) is true for each x
Symmetric: R(x,y) = R(y.x) for each x,y

Transitive: R(x,y) A R(y,z) — R(x,z) for each x,y,z

* An equivalence relation R on § induces a partition of the elements of S into
equivalence classes

Example (connectivity relation among the vertices of a graph):
* Let Vbe the set of vertices of a graph G

* Define the relation
C = {(v,w) € VxV such that G has a path from v to w}

* Relation C1s an equivalence relation

* The equivalence classes of relation C are the vertices in each connected
component of graph G

Link Relation

Edges e and f of connected graph G are
linked if

e e=f,or
* G has a simple cycle containing e and f

Theorem: The link relation on the edges of a . .
graph is an equivalence relation. Equivalence classes of linked edges:

{a} {b9 C’ d’ e’f} {g7 i’ j}
Proof Sketch:

* The reflexive and symmetric properties
follow from the definition

* For the transitive property, consider two
simple cycles sharing an edge

Link Components

The link components of a connected graph G are the equivalence classes of edges
with respect to the link relation

A biconnected component of G 1s the subgraph of G induced by an equivalence
class of linked edges

* A separation edge is a single-element equivalence class of linked edges

* A separation vertex has incident edges in at least two distinct equivalence
classes of linked edge

Biconnectivity 8

Auxiliary Graph
Auxiliary graph B for a connected graph G

e Associated with a DFS traversal of G
* The vertices of B are the edges of G

* For each back edge e of G, B has edges (e,f,), (e.f>) , ..., (e.fp),
where f,, f,, ..., f;, are the discovery edges of G that form a simple cycle with e

The connected components of B correspond to the link components of G

g
: i
h
b N/
[i
- 7
a
DFS on graph G Auxiliary graph B

Biconnectivity 9

Auxiliary Graph (cont.)

In the worst case, the number of edges of the auxiliary graph 1s
proportional to nm.

DFS on graph G Auxiliary graph B

Biconnectivity

An Algorithm to Compute
Biconnected Components

Perform DFS traversal on G
Compute auxiliary graph B
Compute connected components of B

A

For each connected component of B, output vertices of B (edges of G) as
a link component of G

Running time 1s O(nm). Why?
Can we do better?

£ P i
b N/
[i
C
a
DFS on gI'aph G Biconnectivity AUXﬂiary graph B

11

Proxy Graph

Algorithm proxyGraph(G)
Input connected graph G
Output proxy graph F for G
F < empty graph
DFS(G, s) { s is any vertex of G}
for all discovery edges e of G
EinsertVertex(e)
setLabel(e, UNLINKED)
for all vertices v of G in DFS visit order
for all back edges e = (u,v)
FEinsertVertex(e)
repeat {add edges to F only as necessary}
f < discovery edge with dest. u
EinsertEdge(e,f,D)
if F.getLabel(f) = UNLINKED
setLabel(f, LINKED)
u < origin of edge f
else
u < v { ends the loop }
until # =v
return /- a

Proxy graph F

Biconnectivity 12

Proxy Graph (cont.)

Proxy graph F for a connected graph G

* Spanning forest of the auxiliary graph B
* Has m vertices and O(m) edges

* Can be constructed in O(n + m) time

* Its connected components (trees)

correspond to the the link components
of G

Given a graph G with n vertices and m
edges, we can compute the following in
O(n+m) time

* The biconnected components of G
* The separation vertices of G

* The separation edges of G a

Proxy graph F

Biconnectivity 13

