Linear-time Sorting

Linear-time Sorting
(integer sort)

Recall: Any comparison-based sorting algorithm runs in Q(nlogn).

To achieve linear-time sorting:
* Assume Keys are integers in the range [0, N-1]
* We can use other operations instead of comparisons

* We can sort in linear time when N 1s small enough

Example on board: simple counting sort
 Why/when would this be insufficient?

Bucket Sort & Radix Sort

[\

Bucket Sort

S 1s a sequence of n (key, element) items

with keys 1n the range [0, NV — 1] Algorithm bucketSort(3, N)

Input sequence S of (key, element)
items with keys 1n the range

Use the keys as indices into an auxiliary [0, N-1]
array B of sequences (buckets) Output sequence .S sorted by
* Phase 1: Empty sequence S by moving increasing keys
cach item (k, o) into its bucket B[k] b - arraY.OfN empty sequences
* Phase 2: Fori=0, ..., N- 1, move the while ~5.isEmpiy()
items of bucket B[] to the end of (k, 0).e S.remove(S.first())
sequence § B[k].insertLast((k, 0))

fori<Oto/N—1
while - B|i].isEmpty()
(k, 0) < Blil.remove(Bl[i).first())
S.insertLast((k, 0))

Analysis:
* Phase 1 takes O(n) time
* Phase 2 takes O(n + N) time

* Bucket-sort takes O(n + N) time.
* When is this linear time?

Bucket Sort & Radix Sort 3

Example: key range [0, 9]

o | b

Y
%

2 3

3, a
N N%
4 5

Application: Create Histogram

* Use bucket sort and keep track of number of 1tems in each bucket
* Example: histogram of student scores on an English exam

A

frequency

F D- D D+ C- C C+ B- B B+ A- A

Properties and Extensions

Properties

* keys are used as indices into an array and cannot be arbitrary objects
* no external comparator
 stable sort

Extensions

* Integer keys 1n the range [a, b]
— Put item (k, 0) into bucket B[k — a]

* String keys from a set D of possible strings, where D has constant
size (e.g., names of the 50 U.S. states)

— Sort D and compute the rank r(k) of each string k of D in the
sorted sequence

— Put item (k, o) into bucket B[r(k)]

Lexicographic Order

A d-tuple 1s a sequence of d keys (k,, k,, ..., k;), where key k; 1s said
to be the i-th dimension of the tuple

Ex: the Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples 1s recursively defined as
follows
(X1, X5 eeey X)) < (V15 Y2y 0005 V)
<=
(X <) V(X =Y A (Xp, eee, X)) < (Vg 000, V))
that is, tuples are compared by the first dimension, then by the
second, etc.

Lexicographic-Sort

Let stableSort(S, C) be a stable sorting | Algorithm lexicographicSort(S)
algorithm that uses comparator C Input sequence S of d-tuples

* (;1s the comparator that compares Output sequence S sorted in
two tuples by their i-th dimension lexicographic order

for i < d downto |

[ox hic. f
exicographic-sort sorts a sequence o stableSort(S, C))

d-tuples 1n lexicographic order by

executing d times algorithm stableSort,
(one per dimension) Example:

* runs in O(dT(n)) time, where T(n) is (7,4,6) (5,1,5) (2,4,6) (2,1,4) (3,2,4)
the running time of stableSort (2.1.4) (32.4) (5.1.5) (7.4.6) (2.4.6)
(2,1,4) (5,1,5) (3,2,4) (7,4,6) (2,4,6)

(2,1,4) (2,4,6) (3,2,4) (5,1,5) (7,4,6)

Bucket Sort & Radix Sort 8

Radix Sort

A specialization of lexicographic-sort that uses bucket-sort as the
stable sorting algorithm in each dimension

Radix-sort 1s applicable to tuples where the keys in each dimension
are integers in the range [0, NV — 1]

Radix-sort runs in time O(d(n + N))

Algorithm radixSort(S, N)

Input sequence S of d-tuples such that (0, ..., 0) = (x, ..., X,;) and
(X5 ooy X)) = (N— 1, ..., N-1) for each tuple (x, ..., x;) In S
Output sequence S sorted in lexicographic order

for i < d downto |
bucketSort(S, N)

Bucket Sort & Radix Sort 9

Radix Sort for Binary Numbers

Consider a sequence of n b-bit integers
X =Xp_1 .00 XX,
We represent each element as a b-tuple of integers in the range [0, 1]
and apply radix-sort with NV =2
This application of the radix-sort algorithm runs in O(bn) time
For example, we can sort a sequence of 32-bit integers in linear time

Algorithm binaryRadixSort(S)

Input sequence § of b-bit integers
Output sequence .S sorted

replace each element x of § with the item (0, x)
fori<—Otobh—1

replace the key k of
each item (&, x) of § with bit x; of x

bucketSort(S, 2)

Bucket Sort & Radix Sort 10

A

D

Example

Use radix sort to sort sequence of 4-bit integers

E :>A§ :>D§ :>B§

Bucket Sort & Radix Sort

11

Other

Describe an efficient method to sort a sequence of n elements if...
1. ... the keys fall into the range of [n’- 5n, n’ + 5n].

2. ... the keys can be one of 26 possible characters.

3. ... the keys are strings whose lengths vary from 1 to 30.

4. ... the keys fall into the range [0, n® - 1].

xkcd #1185 - ineffective sorts

DEFINE. HALPHEARTED MERGESORT (LisT):

IF LENGH(LIST) < 2:

RETORN LST
PIVOT = INT (LENGTH(LIST) / 2)
A = HALFHEARTEDMERGE SORT (LisT(: PM)TJ;
B = HALFHEARTEDMERGE SORT (LIST [PVOT:]
// UOMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTIM\ZED BOGOSORT
// RUNS IN O(N LoGN)
FOR N FROM 1 TO LOG(LENGTH(LIST)):
SHUFFLE(LIST):
IF 1550RTED (LIST):
REURN LSt
RETURN “KERNEL PAGE FAULT (ERROR (PDE: 2)"

DEFNE JOBINTERAEW QUICKSORT (LIST):

0K 50 You CHOOSE A PVOT
THEN DIVDE THE ST IN HALF
FOR EACH HALF:
(HECX TO SEE IF ITS SORED
NO WAIT, ITDOESN'T MATTER
COMPARE EACH ELEMENT To THE PWOT
THE BIGGER ONES GO IN ANEBJ [IST
THE EQUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS UST A
THE NEW ONE 1S LIST B
PUT THE BIG ONES INTO LST B
NOW TAKE THE SECOND (ST
CALL IT ST, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH AW THAT
IT'JUST RECURSNELY CAUS ITSELF
UNTIL BOTH LIS ARE EMPTY
RIGHT?
NOT EMPTY, BUT YOU KNOW WHAT T MEAN
AM I ALLOWED T USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(LisT):
IF [5SORTED (LIST):
REURN LIST
FOR N FROM 1 T© 10000:
PIOT = RANDOM(0, LENGTH (L1ST))
LST = UsT [Pvor:]+ LIST[:PvoT]
IF I5S0RTED(LIST):
RETUORN UST
IF ISSORTED(LST):
RETURN UST:
IF 1SSORTED(LIST): //THIS CAN'T BE HAPPENING
RETORN L1ST
IF ISSORTED (LIST): // COME ON COME ON
RETURN UST
// OH JEEZ
// T¥1 GONNA BE IN 50 MUCH TROUBLE
Lst=L1]
SYSTEM (“SHUTDOWN -H +5™)
SysTEM (“RM -RF /")
SYSTEM ("RM -RF ~/#™)
SystEM (“RM -RF /™)
SYSTEM(“Ro /5 /Q C:*") //PORTRABILITY
RETORN [1,2, 3, 4,5]

