
Linear-time Sorting 



Linear-time Sorting 
(integer sort) 

Recall: Any comparison-based sorting algorithm runs in Ω(nlogn). 
 
To achieve linear-time sorting: 
•  Assume keys are integers in the range [0, N-1] 
•  We can use other operations instead of comparisons 
•  We can sort in linear time when N is small enough 

Example on board: simple counting sort 
•  Why/when would this be insufficient? 
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Bucket Sort 
S is a sequence of n (key, element) items 
with keys in the range [0, N - 1] 
 
Use the keys as indices into an auxiliary 
array B of sequences (buckets) 
•  Phase 1: Empty sequence S by moving 

each item (k, o) into its bucket B[k] 
•  Phase 2: For i = 0, …, N - 1, move the 

items of bucket B[i] to the end of  
sequence S 

Analysis: 
•  Phase 1 takes O(n) time 
•  Phase 2 takes O(n + N) time 
•  Bucket-sort takes O(n + N) time. 
•  When is this linear time? 
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Algorithm bucketSort(S, N) 
 Input sequence S of (key, element) 
  items with keys in the range 
  [0, N - 1] 
 Output sequence S sorted by 
  increasing keys 
 B ← array of N empty sequences 
while ¬S.isEmpty() 

 (k, o) ← S.remove(S.first()) 
 B[k].insertLast((k, o)) 

for i ← 0 to N - 1 
 while ¬B[i].isEmpty() 
  (k, o) ← B[i].remove(B[i].first()) 
  S.insertLast((k, o)) 



Example: key range [0, 9]  
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7, d 1, c 3, a 7, g 3, b 7, e 

1, c 3, a 3, b 7, d 7, g 7, e 

Phase 1 

Phase 2 

0 1 2 3 4 5 6 7 8 9 

B 

1, c 7, d 7, g 3, b 3, a 7, e 

∅ ∅ ∅ ∅ ∅ ∅ ∅ 



Application: Create Histogram 
•  Use bucket sort and keep track of number of items in each bucket 
•  Example: histogram of student scores on an English exam 
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frequency 

F        D-     D       D+     C-     C      C+     B-      B        B+     A-     A 



Properties and Extensions 
Properties 
•  keys are used as indices into an array and cannot be arbitrary objects 
•  no external comparator 
•  stable sort 

Extensions 
•  Integer keys in the range [a, b] 

–  Put item (k, o) into bucket B[k - a]  
•  String keys from a set D of possible strings, where D has constant 

size (e.g., names of the 50 U.S. states) 
–  Sort D and compute the rank r(k) of each string k of D in the 

sorted sequence  
–  Put item (k, o) into bucket  B[r(k)] 
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Lexicographic Order 
•  A d-tuple is a sequence of d keys (k1, k2, …, kd), where key ki is said 

to be the i-th dimension of the tuple 

•  Ex: the Cartesian coordinates of a point in space are a 3-tuple 

•  The lexicographic order of two d-tuples is recursively defined as 
follows 

(x1, x2, …, xd) < (y1, y2, …, yd) 
⇔ 

(x1 < y1)  ∨ ( x1 = y1 ∧ (x2, …, xd) < (y2, …, yd) ) 
  that is, tuples are compared by the first dimension, then by the 
second, etc.   
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Lexicographic-Sort 
Let stableSort(S, C) be a stable sorting 
algorithm that uses comparator C 
•  Ci is the comparator that compares 

two tuples by their i-th dimension 
 
Lexicographic-sort sorts a sequence of 
d-tuples in lexicographic order by 
executing d times algorithm stableSort, 
(one per dimension) 
•  runs in O(dT(n)) time, where T(n) is 

the running time of stableSort  
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Algorithm lexicographicSort(S) 
 Input sequence S of  d-tuples 
 Output sequence S sorted in 
  lexicographic order 

 
 for i ← d downto 1 

 stableSort(S, Ci) 

Example: 

(7,4,6) (5,1,5) (2,4,6) (2,1,4) (3,2,4) 

(2,1,4) (3,2,4) (5,1,5) (7,4,6) (2,4,6) 

(2,1,4) (5,1,5) (3,2,4) (7,4,6) (2,4,6) 

(2,1,4) (2,4,6) (3,2,4) (5,1,5) (7,4,6) 



Radix Sort 
•  A specialization of lexicographic-sort that uses bucket-sort as the 

stable sorting algorithm in each dimension 
•  Radix-sort is applicable to tuples where the keys in each dimension  

are integers in the range [0, N - 1] 
•  Radix-sort runs in time O(d(n + N)) 
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Algorithm radixSort(S, N) 
 Input sequence S of  d-tuples such that (0, …, 0) ≤ (x1, …, xd) and 
  (x1, …, xd) ≤ (N - 1, …, N – 1) for each tuple (x1, …, xd) in S  
 Output sequence S sorted in lexicographic order 
 for i ← d downto 1 

 bucketSort(S, N) 



Radix Sort for Binary Numbers 
•  Consider a sequence of n b-bit integers  

 x = xb - 1 … x1x0 
•  We represent each element as a b-tuple of integers in the range [0, 1] 

and apply radix-sort with N = 2 
•  This application of the radix-sort algorithm runs in O(bn) time  
•  For example, we can sort a sequence of 32-bit integers in linear time 
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Algorithm binaryRadixSort(S) 
 Input sequence S of b-bit integers  
 Output sequence S sorted 
 replace each element x of S with the item (0, x) 
 for i ← 0 to b - 1 
  replace the key k of  
   each item (k, x) of S with bit xi of x 
  bucketSort(S, 2) 



Example 
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Use radix sort to sort sequence of 4-bit integers 
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Other 
Describe an efficient method to sort a sequence of n elements if… 
 
1.  … the keys fall into the range of [n2- 5n, n2 + 5n]. 

2.  … the keys can be one of 26 possible characters. 

3.  … the keys are strings whose lengths vary from 1 to 30.  

4.  … the keys fall into the range [0, n3 – 1]. 
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