
Linear-time Sorting

Linear-time Sorting
(integer sort)

Recall: Any comparison-based sorting algorithm runs in Ω(nlogn).

To achieve linear-time sorting:
•  Assume keys are integers in the range [0, N-1]
•  We can use other operations instead of comparisons
•  We can sort in linear time when N is small enough

Example on board: simple counting sort
•  Why/when would this be insufficient?

Bucket Sort & Radix Sort 2

Bucket Sort
S is a sequence of n (key, element) items
with keys in the range [0, N - 1]

Use the keys as indices into an auxiliary
array B of sequences (buckets)
•  Phase 1: Empty sequence S by moving

each item (k, o) into its bucket B[k]
•  Phase 2: For i = 0, …, N - 1, move the

items of bucket B[i] to the end of
sequence S

Analysis:
•  Phase 1 takes O(n) time
•  Phase 2 takes O(n + N) time
•  Bucket-sort takes O(n + N) time.
•  When is this linear time?

Bucket Sort & Radix Sort 3

Algorithm bucketSort(S, N)
 Input sequence S of (key, element)
 items with keys in the range
 [0, N - 1]
 Output sequence S sorted by
 increasing keys
 B ← array of N empty sequences
while ¬S.isEmpty()

 (k, o) ← S.remove(S.first())
 B[k].insertLast((k, o))

for i ← 0 to N - 1
 while ¬B[i].isEmpty()
 (k, o) ← B[i].remove(B[i].first())
 S.insertLast((k, o))

Example: key range [0, 9]

Bucket Sort & Radix Sort 4

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2

0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g 3, b 3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅

Application: Create Histogram
•  Use bucket sort and keep track of number of items in each bucket
•  Example: histogram of student scores on an English exam

Bucket Sort & Radix Sort 5

frequency

F D- D D+ C- C C+ B- B B+ A- A

Properties and Extensions
Properties
•  keys are used as indices into an array and cannot be arbitrary objects
•  no external comparator
•  stable sort

Extensions
•  Integer keys in the range [a, b]

–  Put item (k, o) into bucket B[k - a]
•  String keys from a set D of possible strings, where D has constant

size (e.g., names of the 50 U.S. states)
–  Sort D and compute the rank r(k) of each string k of D in the

sorted sequence
–  Put item (k, o) into bucket B[r(k)]

Bucket Sort & Radix Sort 6

Lexicographic Order
•  A d-tuple is a sequence of d keys (k1, k2, …, kd), where key ki is said

to be the i-th dimension of the tuple

•  Ex: the Cartesian coordinates of a point in space are a 3-tuple

•  The lexicographic order of two d-tuples is recursively defined as
follows

(x1, x2, …, xd) < (y1, y2, …, yd)
⇔

(x1 < y1) ∨ (x1 = y1 ∧ (x2, …, xd) < (y2, …, yd))
 that is, tuples are compared by the first dimension, then by the
second, etc.

Bucket Sort & Radix Sort 7

Lexicographic-Sort
Let stableSort(S, C) be a stable sorting
algorithm that uses comparator C
•  Ci is the comparator that compares

two tuples by their i-th dimension

Lexicographic-sort sorts a sequence of
d-tuples in lexicographic order by
executing d times algorithm stableSort,
(one per dimension)
•  runs in O(dT(n)) time, where T(n) is

the running time of stableSort

Bucket Sort & Radix Sort 8

Algorithm lexicographicSort(S)
 Input sequence S of d-tuples
 Output sequence S sorted in
 lexicographic order

 for i ← d downto 1

 stableSort(S, Ci)

Example:

(7,4,6) (5,1,5) (2,4,6) (2,1,4) (3,2,4)

(2,1,4) (3,2,4) (5,1,5) (7,4,6) (2,4,6)

(2,1,4) (5,1,5) (3,2,4) (7,4,6) (2,4,6)

(2,1,4) (2,4,6) (3,2,4) (5,1,5) (7,4,6)

Radix Sort
•  A specialization of lexicographic-sort that uses bucket-sort as the

stable sorting algorithm in each dimension
•  Radix-sort is applicable to tuples where the keys in each dimension

are integers in the range [0, N - 1]
•  Radix-sort runs in time O(d(n + N))

Bucket Sort & Radix Sort 9

Algorithm radixSort(S, N)
 Input sequence S of d-tuples such that (0, …, 0) ≤ (x1, …, xd) and
 (x1, …, xd) ≤ (N - 1, …, N – 1) for each tuple (x1, …, xd) in S
 Output sequence S sorted in lexicographic order
 for i ← d downto 1

 bucketSort(S, N)

Radix Sort for Binary Numbers
•  Consider a sequence of n b-bit integers

 x = xb - 1 … x1x0
•  We represent each element as a b-tuple of integers in the range [0, 1]

and apply radix-sort with N = 2
•  This application of the radix-sort algorithm runs in O(bn) time
•  For example, we can sort a sequence of 32-bit integers in linear time

Bucket Sort & Radix Sort 10

Algorithm binaryRadixSort(S)
 Input sequence S of b-bit integers
 Output sequence S sorted
 replace each element x of S with the item (0, x)
 for i ← 0 to b - 1
 replace the key k of
 each item (k, x) of S with bit xi of x
 bucketSort(S, 2)

Example

Bucket Sort & Radix Sort 11

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110

Use radix sort to sort sequence of 4-bit integers

A

B

C

D

E

B

E

A

C

D

A

C

D

B

E

A

D

B

C

E

D

B

A

C

E

Other
Describe an efficient method to sort a sequence of n elements if…

1.  … the keys fall into the range of [n2- 5n, n2 + 5n].

2.  … the keys can be one of 26 possible characters.

3.  … the keys are strings whose lengths vary from 1 to 30.

4.  … the keys fall into the range [0, n3 – 1].

Bucket Sort & Radix Sort 12

Bucket Sort & Radix Sort 13

xk
cd

 #
11

85
 –

 in
ef

fe
ct

iv
e

so
rts

