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Ordered Dictionaries 
•  Keys are ordered 

•  Perform usual dictionary operations (insertItem, removeItem, 
findElement) and maintain an order relation for the keys 
–  we use an external comparator for keys 

•  New operations:  
–  closestKeyBefore(k), closestElemBefore(k) 
–  closestKeyAfter(k),  closestElemAfter(k) 

•  A special sentinel, NO_SUCH_KEY, is returned if no such item 
in the dictionary satisfies the query 



Binary Search 
•  Items are ordered in a sorted sequence 
•  Find an element k 
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Binary Search 
•  Items are ordered in a sorted sequence 
•  Find an element k 

–  After checking a key j in the sequence, we can tell if item with 
key k will come before or after it 

–  Which item should we compare against first? 
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Binary Search: Find k = 52 
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11 18 22 34 41 52 54 63 68 74 
0       1       2      3       4       5      6       7      8       9 

low high 

Algorithm BinarySearch(S, k, low, high): 

S 



Binary Search: Find k = 52 
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11 18 22 34 41 52 54 63 68 74 
0       1       2      3       4       5      6       7      8       9 

low high mid 

mid ←  ⌊(low + high) / 2⌋ 

Algorithm BinarySearch(S, k, low, high): 

S 



Binary Search: Find k = 52 
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11 18 22 34 41 52 54 63 68 74 
0       1       2      3       4       5      6       7      8       9 

low high mid 

mid ←  ⌊(low + high) / 2⌋ 
if key(mid) = k   then return  elem(mid) 

Algorithm BinarySearch(S, k, low, high): 

S 



Binary Search: Find k = 52 
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11 18 22 34 41 52 54 63 68 74 
0       1       2      3       4       5      6       7      8       9 

low high mid 

mid ←  ⌊(low + high) / 2⌋ 
if key(mid) = k   then return  elem(mid) 
if key(mid) >  k  then return  BinarySearch(S, k, mid + 1, high) 

Algorithm BinarySearch(S, k, low, high): 

S 



Binary Search: Find k = 52 
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11 18 22 34 41 52 54 63 68 74 
0       1       2      3       4       5      6       7      8       9 

low high 
mid 

mid ←  ⌊(low + high) / 2⌋ 
if key(mid) = k   then return  elem(mid) 
if key(mid) >  k  then return  BinarySearch(S, k, mid + 1, high) 

Algorithm BinarySearch(S, k, low, high): 

S 

if key(mid) <  k  then return  BinarySearch(S, k, low, mid -1) 



Binary Search: Find k = 52 
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11 18 22 34 41 52 54 63 68 74 
0       1       2      3       4       5      6       7      8       9 

low high 
mid 

mid ←  ⌊(low + high) / 2⌋ 
if key(mid) = k   then return  elem(mid) 
if key(mid) >  k  then return  BinarySearch(S, k, mid + 1, high) 

Algorithm BinarySearch(S, k, low, high): 

S 

if key(mid) <  k  then return  BinarySearch(S, k, low, mid -1) 

if low > high   then  return  NO_SUCH_KEY 
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Lookup Table 
•  A dictionary implemented by means of an array-based sequence 

which is sorted by key 
–  why use an array-based sequence rather than a linked list? 

•  Performance: 
–  insertItem takes O(n) time to make room by shifting items 
–  removeItem takes O(n) time to compact by shifting items 
–  findElement takes O(log n) time, using binary search 

•  Effective only for 
–  small dictionaries, or 
–  when searches are the most common operations, while 

insertions and removals are rarely performed 
 



Binary Search Tree 
•  A binary search tree is a binary tree where each internal node stores 

a (key, element)-pair, and  
–  each element in the left subtree is smaller than the root 
–  each element in the right subtree is larger than the root 
–  the left and right subtrees are binary search trees 

•  An inorder traversal visits items in ascending order 
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BST – Insert(k, v) 
•  Idea 

–  find a free spot in the tree and add a node which stores that item 
(k, v) 

•  Strategy  
–  start at root r 
–  if k < key(r), continue in left subtree 
–  if k > key(r), continue in right subtree 
–  what if k = key(r) ? 

•  Runtime is O(h), where h is the height of the tree 
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BST – Insert Example 
Insert the numbers 22, 80, 18, 9, 90, 20. 
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BST – Insert Example 
Insert the numbers 22, 80, 18, 9, 90, 20. 
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BST – Insert Example 
Insert the numbers 22, 80, 18, 9, 90, 20. 
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BST – Insert Example 
Insert the numbers 22, 80, 18, 9, 90, 20. 
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BST – Insert Example 
Insert the numbers 22, 80, 18, 9, 90, 20. 
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BST – Insert Example 
Insert the numbers 22, 80, 18, 9, 90, 20. 
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BST – Insert Example 
Insert the numbers 22, 80, 18, 9, 90, 20. 
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22 

80 18 

9 90 20 



BST - Find 
•  Find the node with key k 

•  Strategy 
–  start at root r 
–  if k = key(r), return r 
–  if k < key(r), continue in left subtree 
–  if k > key(r), continue in right subtree 

•  Runtime is O(h), where h is the height of the tree 
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BST – Find Example 
Find the number 20 
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BST - Delete 
•  Delete the node with key k 

•  Strategy: let n be the position of FindElement(k) 
–  Remove n without creating “holes” in the tree 
–  Case 0: n has two children with external nodes 
–  Case 1: n has a child which is an internal node 
–  Case 2: n has two children with internal nodes 

 
•  Runtime is O(h), where h is the height of the tree 
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BST – Delete Example 
Case 0: n has two children which are external nodes 
 
 
 
 
 
 
 
 
 
Delete 9 
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BST – Delete Example 
Case 0: n has two children which are external nodes 
 
 
 
 
 
 
 
 
 
Delete 9 
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BST – Delete Example 
Case 1: n has a child which is an internal node 
 
 
 
 
 
 
 
 
 
Delete 80 
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BST – Delete Example 
Case 1: n has a child which is an internal node 
 
 
 
 
 
 
 
 
 
Delete 80 
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BST – Delete Example 
Case 2: n has two children which are internal nodes 
Find the first internal node m that follows n in an inorder traversal 
We consider the subcase that m has two external nodes 
Replace n with m 
 
 
 
 
 
 
 
Delete 18 
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BST – Delete Example 
Case 2: n has two children which are internal nodes 
Find the first internal node m that follows n in an inorder traversal 
We consider the subcase that m has two external nodes 
Replace n with m 
 
 
 
 
 
 
 
Delete 18 
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BST Performance 
Space used is O(n) 
Runtime of all operations is O(h) 
•  What is h in the worst case? 
 
Consider inserting the sequence 1, 2, …, n – 1, n 
 
 
 
 
 
 
 
Worst case height h ∈ O(n). 
•  How do we keep the tree balanced? 
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Dictionary: Worst-case Comparison 
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Unordered Ordered 

Log 
file 

Hash table Lookup 
table 

Binary 
Search Tree 

Balanced 
Trees 

size, isEmpty O(1) O(1) O(1) O(1) O(1) 

keys, elements O(n) O(n) O(n) O(n) O(n) 

findElement O(n) O(n)**  O(logn) O(h) O(logn) 

insertItem O(1) O(n)** O(n) O(h) O(logn) 

removeElement O(n) O(n)** O(n) O(h) O(logn) 

closestKey 
closestElem 

O(n) 
 

O(n) 
 

O(logn) O(h) O(logn) 
 

** Expected 
running time 
is O(1) 



Other 
•  You are given two sorted integer arrays A and B such that no integer 

is contained twice in the same array. A and B are nearly identical. 
However, B is missing exactly one number. Find the missing number 
in B. 

•  You are given a sorted array A of distinct integers. Determine 
whether there exists an index i such that A[i] = i. 

•  You are given an array A of integers. Determine the most frequent 
number.  
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