
Binary Search Trees
6

9 2

4 1 8

less than 6 larger than 6

Binary Search Trees 2

Ordered Dictionaries
•  Keys are ordered

•  Perform usual dictionary operations (insertItem, removeItem,
findElement) and maintain an order relation for the keys
–  we use an external comparator for keys

•  New operations:
–  closestKeyBefore(k), closestElemBefore(k)
–  closestKeyAfter(k), closestElemAfter(k)

•  A special sentinel, NO_SUCH_KEY, is returned if no such item
in the dictionary satisfies the query

Binary Search
•  Items are ordered in a sorted sequence
•  Find an element k

Binary Search Trees 3

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

Binary Search
•  Items are ordered in a sorted sequence
•  Find an element k

–  After checking a key j in the sequence, we can tell if item with
key k will come before or after it

–  Which item should we compare against first?

Binary Search Trees 4

The middle

Binary Search: Find k = 52

Binary Search Trees 5

11 18 22 34 41 52 54 63 68 74
0 1 2 3 4 5 6 7 8 9

low high

Algorithm BinarySearch(S, k, low, high):

S

Binary Search: Find k = 52

Binary Search Trees 6

11 18 22 34 41 52 54 63 68 74
0 1 2 3 4 5 6 7 8 9

low high mid

mid ← ⌊(low + high) / 2⌋

Algorithm BinarySearch(S, k, low, high):

S

Binary Search: Find k = 52

Binary Search Trees 7

11 18 22 34 41 52 54 63 68 74
0 1 2 3 4 5 6 7 8 9

low high mid

mid ← ⌊(low + high) / 2⌋
if key(mid) = k then return elem(mid)

Algorithm BinarySearch(S, k, low, high):

S

Binary Search: Find k = 52

Binary Search Trees 8

11 18 22 34 41 52 54 63 68 74
0 1 2 3 4 5 6 7 8 9

low high mid

mid ← ⌊(low + high) / 2⌋
if key(mid) = k then return elem(mid)
if key(mid) > k then return BinarySearch(S, k, mid + 1, high)

Algorithm BinarySearch(S, k, low, high):

S

Binary Search: Find k = 52

Binary Search Trees 9

11 18 22 34 41 52 54 63 68 74
0 1 2 3 4 5 6 7 8 9

low high
mid

mid ← ⌊(low + high) / 2⌋
if key(mid) = k then return elem(mid)
if key(mid) > k then return BinarySearch(S, k, mid + 1, high)

Algorithm BinarySearch(S, k, low, high):

S

if key(mid) < k then return BinarySearch(S, k, low, mid -1)

Binary Search: Find k = 52

Binary Search Trees 10

11 18 22 34 41 52 54 63 68 74
0 1 2 3 4 5 6 7 8 9

low high
mid

mid ← ⌊(low + high) / 2⌋
if key(mid) = k then return elem(mid)
if key(mid) > k then return BinarySearch(S, k, mid + 1, high)

Algorithm BinarySearch(S, k, low, high):

S

if key(mid) < k then return BinarySearch(S, k, low, mid -1)

if low > high then return NO_SUCH_KEY

Binary Search Trees 11

Lookup Table
•  A dictionary implemented by means of an array-based sequence

which is sorted by key
–  why use an array-based sequence rather than a linked list?

•  Performance:
–  insertItem takes O(n) time to make room by shifting items
–  removeItem takes O(n) time to compact by shifting items
–  findElement takes O(log n) time, using binary search

•  Effective only for
–  small dictionaries, or
–  when searches are the most common operations, while

insertions and removals are rarely performed

Binary Search Tree
•  A binary search tree is a binary tree where each internal node stores

a (key, element)-pair, and
–  each element in the left subtree is smaller than the root
–  each element in the right subtree is larger than the root
–  the left and right subtrees are binary search trees

•  An inorder traversal visits items in ascending order

Binary Search Trees 12

r

≤ r ≥ r

BST – Insert(k, v)
•  Idea

–  find a free spot in the tree and add a node which stores that item
(k, v)

•  Strategy
–  start at root r
–  if k < key(r), continue in left subtree
–  if k > key(r), continue in right subtree
–  what if k = key(r) ?

•  Runtime is O(h), where h is the height of the tree

Binary Search Trees 13

BST – Insert Example
Insert the numbers 22, 80, 18, 9, 90, 20.

Binary Search Trees 14

22

BST – Insert Example
Insert the numbers 22, 80, 18, 9, 90, 20.

Binary Search Trees 15

22

80

BST – Insert Example
Insert the numbers 22, 80, 18, 9, 90, 20.

Binary Search Trees 16

22

18

80

BST – Insert Example
Insert the numbers 22, 80, 18, 9, 90, 20.

Binary Search Trees 17

22

9

80 18

BST – Insert Example
Insert the numbers 22, 80, 18, 9, 90, 20.

Binary Search Trees 18

22

90

80 18

9

BST – Insert Example
Insert the numbers 22, 80, 18, 9, 90, 20.

Binary Search Trees 19

22

20

80 18

9 90

BST – Insert Example
Insert the numbers 22, 80, 18, 9, 90, 20.

Binary Search Trees 20

22

80 18

9 90 20

BST - Find
•  Find the node with key k

•  Strategy
–  start at root r
–  if k = key(r), return r
–  if k < key(r), continue in left subtree
–  if k > key(r), continue in right subtree

•  Runtime is O(h), where h is the height of the tree

Binary Search Trees 21

BST – Find Example
Find the number 20

Binary Search Trees 22

22

80 18

9 90 20

20

BST - Delete
•  Delete the node with key k

•  Strategy: let n be the position of FindElement(k)
–  Remove n without creating “holes” in the tree
–  Case 0: n has two children with external nodes
–  Case 1: n has a child which is an internal node
–  Case 2: n has two children with internal nodes

•  Runtime is O(h), where h is the height of the tree

Binary Search Trees 23

BST – Delete Example
Case 0: n has two children which are external nodes

Delete 9

Binary Search Trees 24

22

80 18

9 90 20

BST – Delete Example
Case 0: n has two children which are external nodes

Delete 9

Binary Search Trees 25

22

80 18

90 20

BST – Delete Example
Case 1: n has a child which is an internal node

Delete 80

 Binary Search Trees 26

22

80 18

9 90 20

BST – Delete Example
Case 1: n has a child which is an internal node

Delete 80

Binary Search Trees 27

22

18

9

90

20

BST – Delete Example
Case 2: n has two children which are internal nodes
Find the first internal node m that follows n in an inorder traversal
We consider the subcase that m has two external nodes
Replace n with m

Delete 18

Binary Search Trees 28

22

80 18

9 90 20

19

BST – Delete Example
Case 2: n has two children which are internal nodes
Find the first internal node m that follows n in an inorder traversal
We consider the subcase that m has two external nodes
Replace n with m

Delete 18

Binary Search Trees 29

22

80 19

9 90 20

BST Performance
Space used is O(n)
Runtime of all operations is O(h)
•  What is h in the worst case?

Consider inserting the sequence 1, 2, …, n – 1, n

Worst case height h ∈ O(n).
•  How do we keep the tree balanced?

Binary Search Trees 30

1

2

n

Dictionary: Worst-case Comparison

Binary Search Trees 31

Unordered Ordered

Log
file

Hash table Lookup
table

Binary
Search Tree

Balanced
Trees

size, isEmpty O(1) O(1) O(1) O(1) O(1)

keys, elements O(n) O(n) O(n) O(n) O(n)

findElement O(n) O(n)** O(logn) O(h) O(logn)

insertItem O(1) O(n)** O(n) O(h) O(logn)

removeElement O(n) O(n)** O(n) O(h) O(logn)

closestKey
closestElem

O(n)

O(n)

O(logn) O(h) O(logn)

** Expected
running time
is O(1)

Other
•  You are given two sorted integer arrays A and B such that no integer

is contained twice in the same array. A and B are nearly identical.
However, B is missing exactly one number. Find the missing number
in B.

•  You are given a sorted array A of distinct integers. Determine
whether there exists an index i such that A[i] = i.

•  You are given an array A of integers. Determine the most frequent
number.

Binary Search Trees 32

