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Priority Queue ADT 
•  Stores a collection of (key, element) pairs 
•  Main methods 

–  insertItem(k, o): inserts an item with key k and element o 
–  removeMin(): removes the item with smallest key and returns its 

element 
–  minKey(): returns, but does not remove, the smallest key of an 

item 
–  minElement(): returns, but does not remove, the element of an 

item with smallest key 
–  size(), isEmpty() 

•  Applications: 
–  Multithreading 
–  Triage 
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Keys must be comparable 
•  Keys in a priority queue can be arbitrary objects on which an order 

is defined 

•  Two distinct items in a priority queue can have the same key 

•  Mathematical concept of total order relation ≤ 
–  Reflexive property: x ≤ x 
–  Antisymmetric property: x ≤ y  ∧  y ≤ x   ⇒   x = y 
–  Transitive property:  x ≤ y  ∧  y ≤ z   ⇒   x ≤ z 
–  Comparability:   x ≤ y  or y ≤ x  for any x,y 
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Comparator ADT 
•  Encapsulates the action of comparing two objects according to a 

given total order relation 
•  A generic priority queue uses an auxiliary comparator 
•  The comparator is external to the keys being compared 
•  When the priority queue needs to compare two keys, it uses its 

comparator 
•  Predicate methods: 

–  isLessThan(x, y) 
–  isLessThanOrEqualTo(x,y) 
–  isEqualTo(x,y) 
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–  isGreaterThan(x, y) 
–  isGreaterThanOrEqualTo(x,y) 
–  isComparable(x) 

4 



Suppose you are given a priority queue implementation, so you have 
the following operations to work with: 

 
insertItem(k, o) 
removeMin() 

minKey() 
minElement() 

size() 
isEmpty() 

 
How can you use it to sort a sequence S of numbers? 
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Sorting with a Priority Queue 
We can use a priority queue to sort a set of comparable elements 
1.  Insert the elements one by one with a series of insertItem(e, e) 

operations 
2.  Remove the elements in sorted order with a series of removeMin() 

operations 

Running time 
depends on the 
priority queue 
implementation 
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Algorithm PQ-Sort(S, C) 
Input sequence S, comparator C for the elements of S 
Output sequence S sorted in increasing order according to C 
P ← priority queue with comparator C 
while ¬S.isEmpty () 

 e ← S.remove (S. first ()) 
P.insertItem(e, e) 

while ¬P.isEmpty() 
 e ← P.removeMin() 
S.insertLast(e) 

6 



Implementation with a sorted sequence 
•  Store the items of the priority queue in a sequence, sorted by key 
•  insertItem takes O(n) time since we have to find the place where to 

insert the item 
•  removeMin, minKey and minElement take O(1) time since the 

smallest key is at the beginning of the sequence 

Sequence-based Priority Queue 
Implementation with an unsorted sequence 
•  Store the items of the priority queue in a list-based sequence, in 

arbitrary order 
•  insertItem takes O(1) time since we can insert the item at the 

beginning or end of the sequence 
•  removeMin, minKey and minElement take O(n) time since we have 

to traverse the entire sequence to find the smallest key  
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Selection-Sort 
•  Selection-sort is the variation of PQ-sort where the priority queue is 

implemented with an unsorted sequence 

•  Running time of Selection-sort: 
1.  Inserting the elements into the priority queue with n insertItem 

operations takes O(n) time 
2.  Removing the elements in sorted order from the priority queue 

with n removeMin operations takes time proportional to 
    1 + 2 + …+ n 

•  Runs in O(n2) time  
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Insertion-Sort 
•  Insertion-sort is the variation of PQ-sort where the priority queue is 

implemented with a sorted sequence 

•  Running time of Insertion-sort: 
1.  Inserting the elements into the priority queue with n insertItem 

operations takes time proportional to 
    1 + 2 + …+ n 

2.  Removing the elements in sorted order from the priority queue 
with  a series of n removeMin operations takes O(n) time 

 
•  Runs in O(n2) time  

Priority Queues & Heaps 9 



In-place Insertion-sort 
•  Instead of using an external data 

structure, we can implement selection-
sort and insertion-sort in-place 

•  A portion of the input sequence itself 
serves as the priority queue 

•  For in-place insertion-sort 
–  We keep sorted the initial portion of 

the sequence 
–  We can use swapElements instead 

of modifying the sequence 
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What is a Heap 
•  A heap is a binary tree storing keys at its internal nodes and satisfying the 

following properties: 
–  Heap-Order: for every internal node v other than the root, 

key(v) ≥ key(parent(v)) 
–  Complete Binary Tree: let h be the height of the heap 

•  for i = 0, … , h - 1, there are 2i nodes of depth i 
•  at depth h - 1, the internal nodes are to the left of the external 

nodes 

•  The last node of a heap is the rightmost internal node of depth h - 1 
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Height of a Heap 
Theorem: A heap storing n keys has height O(log n) 
Proof: (we apply the complete binary tree property) 
•  Let h be the height of a heap storing n keys 
•  Since there are 2i keys at depth i = 0, … , h - 2 and at least one  key at 

depth h - 1, we have n ≥ 1 + 2 + 4 + … + 2h-2  + 1  

•  Thus, n ≥ 2h-1 , i.e., h ≤ log n + 1 
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Heaps and Priority Queues 
•  We can use a heap to implement a priority queue 
•  We store a (key, element) item at each internal node 
•  We keep track of the position of the last node 
•  For simplicity, we show only the keys in the pictures 

(2, Sue) 

(6, Mark) (5, Pat) 

(9, Jeff) (7, Anna) 
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Insertion into a Heap: insertItem(k,o) 

Consists of three steps: 
•  Find the insertion node z (the new last node) 
•  Store k at z and expand z into an internal node 
•  Restore the heap-order property (discussed next) 
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Upheap Bubbling 
•  After the insertion of a new key k, the heap-order property may be violated 
•  Algorithm upheap restores the heap-order property by swapping k along an 

upward path from the insertion node 
•  Terminates when the key k reaches the root or a node whose parent has a key 

smaller than or equal to k  
•  Since a heap has height O(log n), upheap runs in O(log n) time 
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Removal from a Heap: removeMin() 
Consists of three steps 
•  Replace the root key with the key of the last node w 
•  Compress w and its children into a leaf 
•  Restore the heap-order property (discussed next) 
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Downheap Bubbling 
•  After replacing the root key with the key k of the last node, the heap-order 

property may be violated 
•  Algorithm downheap restores the heap-order property by swapping key k 

with the smallest key among children along a downward path from the root 
•  Terminates when key k reaches a leaf or a node whose children have keys 

greater than or equal to k  
•  Since a heap has height O(log n), downheap runs in O(log n) time 
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Finding the Last Node 
•  The last node can be found by traversing a path of O(log n) nodes 

–  While the current node is a right child, go to the parent node 
–  If the current node is a left child of v, go to the right child of v 
–  While the current node is internal, go to the left child 

•  Similar algorithm for updating the last node after a removal 
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Heap-Sort 
•  Consider a priority queue with n items implemented by means of a heap 

–  the space used is O(n) 
–  methods insertItem and removeMin take O(log n) time 
–  methods size, isEmpty, minKey, and minElement take time O(1) time 

•  Using a heap-based priority queue, we can sort a sequence of n elements in 
O(n log n) time 
–  much faster than quadratic sorting algorithms, such as insertion-sort and 

selection-sort 
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Vector-based Heap Implementation 
We can represent a heap with n keys by means of a vector of length n + 1 
•  For the node at rank i 

–  left child is at rank 2i 
–  right child is at rank 2i + 1 

•  What does not need to be stored: 
–  links between nodes 
–  leaves 

•  The cell at rank 0 is not used 

•  Last node is at rank n 
–  insertItem inserts at rank  n + 1 
–  removeMin removes at rank n (after swapping root with last node) 

•  Yields in-place heap-sort 
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•  If all keys are known in advance, we can build a heap recursively 
•  For simplicity, assume number of keys n = 2h – 1 so the heap is a complete 

binary tree with every level being full 
•  Given n keys, build heap using a bottom-up construction with log n phases 
•  In phase i, pairs of heaps with 2i -1 keys are merged into heaps with 2i+1-1 

keys 

Bottom-up Heap Construction 

2i -1 2i -1 
2i+1-1 
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Merging Two Heaps 
•  We are given two heaps and a key k 

•  We create a new heap with the root 
node storing k and with the two 
heaps as subtrees 

•  We perform downheap to restore the 
heap-order property  
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Example 
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Example (contd.) 
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Example (contd.) 
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Example (end) 
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Analysis 
•  We visualize the worst-case time of a downheap with a proxy path that goes 

first right and then repeatedly goes left until the bottom of the heap (this path 
may differ from the actual downheap path) 

•  Since each node is traversed by at most two proxy paths, the total number of 
nodes of the proxy paths is O(n)  

•  Thus, bottom-up heap construction runs in O(n) time  
•  Bottom-up heap construction is faster than n successive insertions and speeds 

up the first phase of heap-sort 


