Priority Queues & Heaps

Priority Queue ADT

Stores a collection of (key, element) pairs
Main methods

insertltem(k, 0): inserts an item with key k and element o
removeMin(): removes the item with smallest key and returns its
clement

minKey(): returns, but does not remove, the smallest key of an
item

minElement(): returns, but does not remove, the element of an
item with smallest key

size(), 1IsEmpty()

Applications:

Multithreading
Triage

Priority Queues & Heaps

[\

Keys must be comparable

Keys in a priority queue can be arbitrary objects on which an order
1s defined

Two distinct items 1n a priority queue can have the same key

Mathematical concept of total order relation <
— Reflexive property: x < x
— Antisymmetric property: X<y A y<sx = XxX=y
— Transitive property: X<y A y<sz = X=<Z

— Comparability: x<y ory=x for any x,y

Comparator ADT

Encapsulates the action of comparing two objects according to a
given total order relation

A generic priority queue uses an auxiliary comparator
The comparator is external to the keys being compared

When the priority queue needs to compare two keys, it uses its
comparator

Predicate methods:

— isLessThan(x, y) — 1sGreaterThan(x, y)
— isLessThanOrEqualTo(x,y) — 1sGreater ThanOrEqualTo(x,y)
— isEqualTo(x,y) — 1sComparable(x)

Priority Queues & Heaps 4

Suppose you are given a priority queue implementation, so you have
the following operations to work with:

insertltem(k, o)

removeMin()
minKey()
minElement()
s1ze()
1IsEmpty()

How can you use it to sort a sequence § of numbers?

Priority Queues & Heaps

Sorting with a Priority Queue

We can use a priority queue to sort a set of comparable elements
1. Insert the elements one by one with a series of insertltem(e, €)

operations

2. Remove the elements in sorted order with a series of removeMin()

operations

Running time
depends on the
priority queue
implementation

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C for the elements of §
Output sequence S sorted in increasing order according to C

P < priority queue with comparator C
while = S.isEmpty ()
e < S.remove (8. first ())
Pinsertltem(e, e)
while = PisEmpty()
e < PremoveMin()
S.insertLast(e)

Priority Queues & Heaps 6

Sequence-based Priority Queue

Implementation with an unsorted sequence O—0—0—00

* Store the items of the priority queue 1n a list-based sequence, in
arbitrary order

* 1nsertltem takes O(1) time since we can insert the item at the
beginning or end of the sequence

* removeMin, minKey and minElement take O(n) time since we have
to traverse the entire sequence to find the smallest key

Implementation with a sorted sequence @ @ @ @ @
* Store the items of the priority queue in a sequence, sorted by key

* 1nsertltem takes O(n) time since we have to find the place where to
insert the item

* removeMin, minKey and minElement take O(1) time since the
smallest key 1s at the beginning of the sequence

Selection-Sort

Selection-sort is the variation of PQ-sort where the priority queue is
implemented with an unsorted sequence

Running time of Selection-sort:

1. Inserting the elements into the priority queue with n insertltem
operations takes O(n) time

2. Removing the elements in sorted order from the priority queue
with n removeMin operations takes time proportional to
142+ ...+n

Runs in O(n”) time

Insertion-Sort

* Insertion-sort 1s the variation of PQ-sort where the priority queue is
implemented with a sorted sequence

* Running time of Insertion-sort:

1. Inserting the elements into the priority queue with n insertltem
operations takes time proportional to
l1+2+...+n

2. Removing the elements in sorted order from the priority queue
with a series of m removeMin operations takes O(n) time

* Runs in O(n’) time

In-place Insertion-sort

Instead of using an external data
structure, we can implement selection-
sort and 1nsertion-sort in-place

A portion of the input sequence itself
serves as the priority queue

For in-place insertion-sort

— We keep sorted the initial portion of
the sequence

— We can use swapElements instead
of modifying the sequence

©

©

©

~

©

©

©

©

@

00
G600
O—0—=0
G— 99—
0—0—0
000

©

®

What is a Heap

A heap is a binary tree storing keys at its internal nodes and satisfying the
following properties:

— Heap-Order: for every internal node v other than the root,
key(v) = key(parent(v))
— Complete Binary Tree: let A be the height of the heap
« fori=0, ..., h— 1, there are 2/ nodes of depth i

 at depth & — 1, the internal nodes are to the left of the external
nodes

The last node of a heap 1s the rightmost internal node of depth A — 1

Priority Queues & Heaps last nOde

Height of a Heap

Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
* Let A be the height of a heap storing n keys

 Since there are 2/ keys at depthi =0, ... , A — 2 and at least one key at
depthh—1, wehaven=1+2+4+ ... +2F2 +1

 Thus,n=2"" ie, h=<logn+1

depth keys

Priority Queues & Heaps

Heaps and Priority Queues

We can use a heap to implement a priority queue

We store a (key, element) item at each internal node
We keep track of the position of the last node

For simplicity, we show only the keys 1n the pictures

[(2, Sue)]

Priority Queues & Heaps

Insertion into a Heap: insertltem(k,o0)

Consists of three steps:

* Find the insertion node z (the new last node)

* Store k at 7z and expand z into an internal node

* Restore the heap-order property (discussed next)

insertion node

Priority Queues & Heaps 14

Upheap Bubbling

After the insertion of a new key k, the heap-order property may be violated

Algorithm upheap restores the heap-order property by swapping k along an
upward path from the insertion node

Terminates when the key k& reaches the root or a node whose parent has a key
smaller than or equal to &k

Since a heap has height O(log n), upheap runs in O(log n) time

Priority Queues & Heaps 15

Removal from a Heap: removeMin()

Consists of three steps

* Replace the root key with the key of the last node w
* Compress w and its children into a leaf

* Restore the heap-order property (discussed next)

last node

Priority Queues & Heaps 16

Downheap Bubbling

After replacing the root key with the key k& of the last node, the heap-order
property may be violated

Algorithm downheap restores the heap-order property by swapping key k
with the smallest key among children along a downward path from the root

Terminates when key k& reaches a leaf or a node whose children have keys
greater than or equal to k

Since a heap has height O(log n), downheap runs in O(log n) time

Priority Queues & Heaps 17

Finding the Last Node

The last node can be found by traversing a path of O(log n) nodes
— While the current node 1s a right child, go to the parent node
— If the current node is a left child of v, go to the right child of v
— While the current node is internal, go to the left child

Similar algorithm for updating the last node after a removal

e ————
- =
—_—

Priority Queues & Heaps

Heap-Sort

Consider a priority queue with n items implemented by means of a heap
— the space used 1s O(n)
— methods insertltem and removeMin take O(log n) time
— methods size, isEmpty, minKey, and minElement take time O(1) time

Using a heap-based priority queue, we can sort a sequence of n elements in
O(n log n) time

— much faster than quadratic sorting algorithms, such as insertion-sort and
selection-sort

Priority Queues & Heaps 19

Vector-based Heap Implementation

We can represent a heap with n keys by means of a vector of length n + 1
* For the node at rank i

— left child 1s at rank 2i

— right child 1s at rank 27 + 1

« What does not need to be stored:
— links between nodes
— leaves

e The cell at rank 0 1s not used

* Lastnode 1s at rank n
— insertltem inserts at rank n + 1 o T 2 3 4 5
— removeMin removes at rank n (after swapping root with last node)

* Yields in-place heap-sort

Priority Queues & Heaps 20

Bottom-up Heap Construction

If all keys are known 1n advance, we can build a heap recursively

For simplicity, assume number of keys n = 2" - 1 so the heap is a complete
binary tree with every level being full

Given n keys, build heap using a bottom-up construction with log n phases

In phase i, pairs of heaps with 2/—1 keys are merged into heaps with 2*+1-1
keys

A A °

Priority Queues & Heaps 21

Merging Two Heaps

We are given two heaps and a key &k 3

We create a new heap with the root
node storing k and with the two
heaps as subtrees

We perform downheap to restore the
heap-order property

[\®)
\S)

Priority Queues & Heaps

Example

~ ~
o8 T o8 o
))
PN /\ “\ /\ “\ PN

AAAAAAAAN

\®)
W

Priority Queues & Heaps

Example (contd.)

Priority Queues & Heaps 24

Example (contd.)

Priority Queues & Heaps 25

Example (end)

Analysis

We visualize the worst-case time of a downheap with a proxy path that goes
first right and then repeatedly goes left until the bottom of the heap (this path
may differ from the actual downheap path)

Since each node is traversed by at most two proxy paths, the total number of
nodes of the proxy paths 1s O(n)

Thus, bottom-up heap construction runs in O(n) time

Bottom-up heap construction is faster than n successive insertions and speeds
up the first phase of heap-sort

e —
———
_—
-

Priority Queues & Heaps 27

