
Priority Queues & Heaps

Priority Queue ADT
•  Stores a collection of (key, element) pairs
•  Main methods

–  insertItem(k, o): inserts an item with key k and element o
–  removeMin(): removes the item with smallest key and returns its

element
–  minKey(): returns, but does not remove, the smallest key of an

item
–  minElement(): returns, but does not remove, the element of an

item with smallest key
–  size(), isEmpty()

•  Applications:
–  Multithreading
–  Triage

Priority Queues & Heaps

2

Keys must be comparable
•  Keys in a priority queue can be arbitrary objects on which an order

is defined

•  Two distinct items in a priority queue can have the same key

•  Mathematical concept of total order relation ≤
–  Reflexive property: x ≤ x
–  Antisymmetric property: x ≤ y ∧ y ≤ x ⇒ x = y
–  Transitive property: x ≤ y ∧ y ≤ z ⇒ x ≤ z
–  Comparability: x ≤ y or y ≤ x for any x,y

Priority Queues & Heaps 3

Comparator ADT
•  Encapsulates the action of comparing two objects according to a

given total order relation
•  A generic priority queue uses an auxiliary comparator
•  The comparator is external to the keys being compared
•  When the priority queue needs to compare two keys, it uses its

comparator
•  Predicate methods:

–  isLessThan(x, y)
–  isLessThanOrEqualTo(x,y)
–  isEqualTo(x,y)

Priority Queues & Heaps

–  isGreaterThan(x, y)
–  isGreaterThanOrEqualTo(x,y)
–  isComparable(x)

4

Suppose you are given a priority queue implementation, so you have
the following operations to work with:

insertItem(k, o)
removeMin()

minKey()
minElement()

size()
isEmpty()

How can you use it to sort a sequence S of numbers?

Priority Queues & Heaps 5

Sorting with a Priority Queue
We can use a priority queue to sort a set of comparable elements
1.  Insert the elements one by one with a series of insertItem(e, e)

operations
2.  Remove the elements in sorted order with a series of removeMin()

operations

Running time
depends on the
priority queue
implementation

Priority Queues & Heaps

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C for the elements of S
Output sequence S sorted in increasing order according to C
P ← priority queue with comparator C
while ¬S.isEmpty ()

 e ← S.remove (S. first ())
P.insertItem(e, e)

while ¬P.isEmpty()
 e ← P.removeMin()
S.insertLast(e)

6

Implementation with a sorted sequence
•  Store the items of the priority queue in a sequence, sorted by key
•  insertItem takes O(n) time since we have to find the place where to

insert the item
•  removeMin, minKey and minElement take O(1) time since the

smallest key is at the beginning of the sequence

Sequence-based Priority Queue
Implementation with an unsorted sequence
•  Store the items of the priority queue in a list-based sequence, in

arbitrary order
•  insertItem takes O(1) time since we can insert the item at the

beginning or end of the sequence
•  removeMin, minKey and minElement take O(n) time since we have

to traverse the entire sequence to find the smallest key

Priority Queues & Heaps

4 5 2 3 1

1 2 3 4 5

7

Selection-Sort
•  Selection-sort is the variation of PQ-sort where the priority queue is

implemented with an unsorted sequence

•  Running time of Selection-sort:
1.  Inserting the elements into the priority queue with n insertItem

operations takes O(n) time
2.  Removing the elements in sorted order from the priority queue

with n removeMin operations takes time proportional to
 1 + 2 + …+ n

•  Runs in O(n2) time

Priority Queues & Heaps 8

Insertion-Sort
•  Insertion-sort is the variation of PQ-sort where the priority queue is

implemented with a sorted sequence

•  Running time of Insertion-sort:
1.  Inserting the elements into the priority queue with n insertItem

operations takes time proportional to
 1 + 2 + …+ n

2.  Removing the elements in sorted order from the priority queue
with a series of n removeMin operations takes O(n) time

•  Runs in O(n2) time

Priority Queues & Heaps 9

In-place Insertion-sort
•  Instead of using an external data

structure, we can implement selection-
sort and insertion-sort in-place

•  A portion of the input sequence itself
serves as the priority queue

•  For in-place insertion-sort
–  We keep sorted the initial portion of

the sequence
–  We can use swapElements instead

of modifying the sequence

Priority Queues & Heaps

5 4 2 3 1

5 4 2 3 1

4 5 2 3 1

2 4 5 3 1

2 3 4 5 1

1 2 3 4 5

1 2 3 4 5

10

What is a Heap
•  A heap is a binary tree storing keys at its internal nodes and satisfying the

following properties:
–  Heap-Order: for every internal node v other than the root,

key(v) ≥ key(parent(v))
–  Complete Binary Tree: let h be the height of the heap

•  for i = 0, … , h - 1, there are 2i nodes of depth i
•  at depth h - 1, the internal nodes are to the left of the external

nodes

•  The last node of a heap is the rightmost internal node of depth h - 1

Priority Queues & Heaps

2

6 5

7 9

last node 11

Priority Queues & Heaps 12

Height of a Heap
Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
•  Let h be the height of a heap storing n keys
•  Since there are 2i keys at depth i = 0, … , h - 2 and at least one key at

depth h - 1, we have n ≥ 1 + 2 + 4 + … + 2h-2 + 1

•  Thus, n ≥ 2h-1 , i.e., h ≤ log n + 1

1

2

2h-2

1

keys
0

1

h-2

h-1

depth

Priority Queues & Heaps 13

Heaps and Priority Queues
•  We can use a heap to implement a priority queue
•  We store a (key, element) item at each internal node
•  We keep track of the position of the last node
•  For simplicity, we show only the keys in the pictures

(2, Sue)

(6, Mark) (5, Pat)

(9, Jeff) (7, Anna)

Priority Queues & Heaps 14

Insertion into a Heap: insertItem(k,o)

Consists of three steps:
•  Find the insertion node z (the new last node)
•  Store k at z and expand z into an internal node
•  Restore the heap-order property (discussed next)

2

6 5

7 9

insertion node

z

2

6 5

7 9 1
z

Priority Queues & Heaps 15

Upheap Bubbling
•  After the insertion of a new key k, the heap-order property may be violated
•  Algorithm upheap restores the heap-order property by swapping k along an

upward path from the insertion node
•  Terminates when the key k reaches the root or a node whose parent has a key

smaller than or equal to k
•  Since a heap has height O(log n), upheap runs in O(log n) time

2

1 5

7 9 6
z

1

2 5

7 9 6
z

Priority Queues & Heaps 16

Removal from a Heap: removeMin()
Consists of three steps
•  Replace the root key with the key of the last node w
•  Compress w and its children into a leaf
•  Restore the heap-order property (discussed next)

2

6 5

7 9

last node

w

7

6 5

9
w

Priority Queues & Heaps 17

Downheap Bubbling
•  After replacing the root key with the key k of the last node, the heap-order

property may be violated
•  Algorithm downheap restores the heap-order property by swapping key k

with the smallest key among children along a downward path from the root
•  Terminates when key k reaches a leaf or a node whose children have keys

greater than or equal to k
•  Since a heap has height O(log n), downheap runs in O(log n) time

7

6 5

9
w

5

6 7

9
w

Priority Queues & Heaps 18

Finding the Last Node
•  The last node can be found by traversing a path of O(log n) nodes

–  While the current node is a right child, go to the parent node
–  If the current node is a left child of v, go to the right child of v
–  While the current node is internal, go to the left child

•  Similar algorithm for updating the last node after a removal

Priority Queues & Heaps 19

Heap-Sort
•  Consider a priority queue with n items implemented by means of a heap

–  the space used is O(n)
–  methods insertItem and removeMin take O(log n) time
–  methods size, isEmpty, minKey, and minElement take time O(1) time

•  Using a heap-based priority queue, we can sort a sequence of n elements in
O(n log n) time
–  much faster than quadratic sorting algorithms, such as insertion-sort and

selection-sort

Priority Queues & Heaps 20

Vector-based Heap Implementation
We can represent a heap with n keys by means of a vector of length n + 1
•  For the node at rank i

–  left child is at rank 2i
–  right child is at rank 2i + 1

•  What does not need to be stored:
–  links between nodes
–  leaves

•  The cell at rank 0 is not used

•  Last node is at rank n
–  insertItem inserts at rank n + 1
–  removeMin removes at rank n (after swapping root with last node)

•  Yields in-place heap-sort

2

6 5

7 9

2 5 6 9 7
1 2 3 4 5 0

1

2 3

4 5

Priority Queues & Heaps 21

•  If all keys are known in advance, we can build a heap recursively
•  For simplicity, assume number of keys n = 2h – 1 so the heap is a complete

binary tree with every level being full
•  Given n keys, build heap using a bottom-up construction with log n phases
•  In phase i, pairs of heaps with 2i -1 keys are merged into heaps with 2i+1-1

keys

Bottom-up Heap Construction

2i -1 2i -1
2i+1-1

Priority Queues & Heaps 22

Merging Two Heaps
•  We are given two heaps and a key k

•  We create a new heap with the root
node storing k and with the two
heaps as subtrees

•  We perform downheap to restore the
heap-order property

7

3

5 8

2

6 4

3

5 8

2

6 4

2

3

5 8

4

6 7

Priority Queues & Heaps 23

Example

15 16 12 4 9 6 20 23

25

15 16

5

12 4

11

9 6

27

20 23

Priority Queues & Heaps 24

Example (contd.)

15

25 16

4

12 5

6

9 11

20

27 23

25

15 16

5

12 4

11

9 6

27

20 23

Priority Queues & Heaps 25

Example (contd.)

7

15

25 16

4

12 5

8

6

9 11

20

27 23

4

15

25 16

5

12 7

6

8

9 11

20

27 23

Priority Queues & Heaps 26

Example (end)

4

15

25 16

5

12 7

10

6

8

9 11

20

27 23

5

15

25 16

7

12 10

4

6

8

9 11

20

27 23

Priority Queues & Heaps 27

Analysis
•  We visualize the worst-case time of a downheap with a proxy path that goes

first right and then repeatedly goes left until the bottom of the heap (this path
may differ from the actual downheap path)

•  Since each node is traversed by at most two proxy paths, the total number of
nodes of the proxy paths is O(n)

•  Thus, bottom-up heap construction runs in O(n) time
•  Bottom-up heap construction is faster than n successive insertions and speeds

up the first phase of heap-sort

