Dictionaries and Hash Tables

Dictionary ADT

Models a searchable collection of key-element items called entries
Multiple items with the same key can be allowed

Main operations: find, insert, remove
— findElement(k), insertltem(k, o), removeElement(k)
— size(), 1IsEmpty()
— keys(), elements()

Applications:
— address book
— word-definition pairs

— mapping host names to internet addresses (e.g., www.cs16.net to
128.148.34.101)

Dictionaries and Hash Tables

\9]

Log File

* Alog file 1s a dictionary implemented by means of storing items in an
unsorted sequence
— 1insertltem takes O(1) time since we can insert the new item at the
beginning or at the end of the sequence

— findElement and removeElement take O(n) time since in the worst
case (the item 1s not found) we traverse the entire sequence to look

for an item with the given key

* Effective only for dictionaries of

— small size or

— when insertions are the most common operations, while searches
and removals are rarely performed (e.g., historical record of logins
to a workstation)

Dictionaries and Hash Tables 3

Hash Functions and Hash Tables

A hash function A maps keys of a given type to integers in a fixed
interval [0, NV - 1]

— Ex: h(x) =xmod NN 1s a hash function for integer keys
— The integer h(x) is called the hash value of key x

A hash table for a given key type consists of
— Hash function A
— Array (called table) of size N

When implementing a dictionary with a hash table, the goal is to store
item (k, o) at index i = h(k)

Example

* We design a hash table for a
dictionary storing items (social
security number, name)

B~ LW o~ O

* Our hash table uses an array of
size N = 10,000 and the hash 9957
function 9998
h(x) = last four digits of x 9999

Dictionaries and Hash Tables

Hash Functions

* A hash function is usually specified as the composition of two
functions:

Hash code map Compression map
h,: keys — integers h,: integers — [0, N — 1]

The hash code map is applied first, and the compression map is
applied next on the result

h(x) = h,(h,(x))

 The goal of the hash function is to “disperse” the keys in an
apparently random way

Dictionaries and Hash Tables 6

Hash Code Maps: keys — integers

Memory address

* reinterpret the memory address of the key object as an integer
* default hash code of Java objects

* disadvantage: two key objects with equal value have different hash
codes

Integer cast

* reinterpret bits of the key as an integer

 suitable for smaller keys (when number of bits in the key i1s at most
the number of bits in an integer)

Hash Code Maps: keys — integers

Component sum

 suitable for larger keys

* partition bits of the key into components of fixed length and sum the
components

* disadvantage: many strings will have the same sum

Polynomial accumulation
* good for strings

* partition bits of the key into components of fixed length and
evaluate the polynomial

hl(k) = ao + (llz + a2z2 + ... + (ln_lzn_l

Compression Maps: integers — [0, N-1]

A good hash function guarantees the probability that two different keys
have the same hash is 1/N

Division
* h,(y)=ymodN
* The size N of the hash table is usually chosen to be a prime

* The reason involves number theory and is beyond the scope of this
course

* disadvantage: repeated keys of the form iV + j cause collisions

Multiply, Add and Divide (MAD)

* h,(y)=(ay+b)mod N

* a and b are nonnegative integers such that a mod N = 0
(otherwise, every integer would map to the same value b)

Collision Handling

Collisions occur when different elements are mapped to the same cell

Chaining
* each cell in the table points to a linked list of elements that map there

* simple, but requires additional memory outside the table

0

g I o [CXTTETITI

2

3

+ [g-{est22.0004 81100004)

Open Addressing

* the colliding item 1s placed in a different cell of the table

* no additional memory, but complicates searching/removing

e common types: linear probing, quadratic probing, double hashing

Dictionaries and Hash Tables 10

Open Addressing: Linear Probing

Placing the colliding item 1n the next (circularly) available table cell
try A[(h(k) +i) mod N] fori=0,1,2,...

Colliding items cluster together, causing future collisions to cause a

longer sequence of probes (searches for next available cell)

Example:
— h(x) =xmod 13

— Insert keys 18, 41, 22,44, 59, 32, 31, 73, 1n this order
18 mod 13 =15

41 mod 13 =2
O 1 2 3 4 5 6 7 8 9 10 11 12 292 mod 13 = 9

1 44 mod 13 =5

59 mod 13=7
41 18] 44| 59| 32{ 221 31| 73 32mod 13=6
O 1 2 3 4 5 6 7 8 9 10 11 12 31mod 13=5

73 mod 13 =8

Search with Linear Probing

Consider a hash table A4 that uses linear Algorithm findElement(k)
probing i < h(k)

p<0

repeat
findElement(k) ¢ — A[i]
» Start at cell h(k) ifc=0

return NO SUCH KEY
elseif c.key () =k
return c.element()

* Check consecutive locations until one of
the following occurs

— An item with key k 1s found, or else
— An empty cell 1s found, or i< (i+1)modN
p<p+1

— N cells have been unsuccessfully

until p=N
probed

return NO SUCH KEY

Dictionaries and Hash Tables 12

Updates with Linear Probing

A special object, called AVAILABLE, replaces deleted elements

* removeElement(k)
— Search for an item with key &
— If 1t is found, replace it with item AVAILABLE and return element
— Else, return NO SUCH KEY

* 1nsert [tem(k, o)
— Throw an exception if the table 1s full
— Start at cell h(k)

— Search consecutive cells until a cell i 1s found that 1s either empty or
stores AVAILABLE

— Store item (k, 0) in cell i

Open Addressing: Double Hashing

Use a secondary hash function d(k) to place items in first available cell
try A[(h(k) + id(k)) mod N] fori=0,1,2,...

d(k) cannot have zero values
The table size /N must be a prime to allow probing of all the cells

Common choice of compression map for the secondary hash function:
d,(k)=¢q - kmod ¢ where ¢ <N and ¢ is a prime

— The possible values are
1,2,...,q

double hashing

— N=13

— h(k) = kmod 13

— d(k)=7-kmod 7

Example of Double Hashing

Consider a hash table storing integer keys that handles collision with

Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

k h(k) d(k) Probes

18
41
22
44
59
32
31
73

o U1l O U1WO N Ul

S~ BhrWPLUUITO R~ W

10

QOIUT O N |UT|WO (N (U1

01 2 3 45 6 7 8 91011 12
31 41 18] 32] 59| 73| 22| 44
01 2 3 45 6 7 8 91011 12

Performance of Hashing

In the worst case, searches, insertions and removals on a hash table take
O(n) time

— occurs when all inserted keys collide

The load factor a = n/N affects the performance of a hash table

— Assuming that the hash values are like random numbers, 1t can be
shown that the expected number of probes for an insertion with
open addressingis 1/(1 —)

— The expected running time of all the dictionary ADT operations in a
hash table 1s O(1)

In practice, hashing is very fast provided the load factor is not close to
100%

Dictionaries and Hash Tables 16

Universal Hashing

A family of hash functions 1s universal 1f for any 0 <j.k < M-1,
Pr(h(j)=h(k))< 1/N

Theorem: The set of all functions, 4, as defined below, 1s universal.
* Choose p as a prime between M and 2M

 Randomly select0<a<pand 0<b<p

* Define h(k)=(ak+b mod p) mod N

Dictionaries and Hash Tables 17

