
Dictionaries and Hash Tables

Dictionaries and Hash Tables 2

Dictionary ADT
•  Models a searchable collection of key-element items called entries

•  Multiple items with the same key can be allowed

•  Main operations: find, insert, remove
–  findElement(k), insertItem(k, o), removeElement(k)
–  size(), isEmpty()
–  keys(), elements()

•  Applications:
–  address book
–  word-definition pairs
–  mapping host names to internet addresses (e.g., www.cs16.net to

128.148.34.101)

Dictionaries and Hash Tables 3

Log File
•  A log file is a dictionary implemented by means of storing items in an

unsorted sequence
–  insertItem takes O(1) time since we can insert the new item at the

beginning or at the end of the sequence
–  findElement and removeElement take O(n) time since in the worst

case (the item is not found) we traverse the entire sequence to look
for an item with the given key

•  Effective only for dictionaries of
–  small size or
–  when insertions are the most common operations, while searches

and removals are rarely performed (e.g., historical record of logins
to a workstation)

Dictionaries and Hash Tables 4

Hash Functions and Hash Tables
•  A hash function h maps keys of a given type to integers in a fixed

interval [0, N - 1]
–  Ex: h(x) = x mod N is a hash function for integer keys
–  The integer h(x) is called the hash value of key x

•  A hash table for a given key type consists of
–  Hash function h
–  Array (called table) of size N

•  When implementing a dictionary with a hash table, the goal is to store
item (k, o) at index i = h(k)

Dictionaries and Hash Tables 5

Example

•  We design a hash table for a
dictionary storing items (social
security number, name)

•  Our hash table uses an array of
size N = 10,000 and the hash
function
h(x) = last four digits of x

∅

∅

∅

∅

0
1
2
3
4

9997
9998
9999

…

451-22-0004

981-10-0002

200-75-9998

025-61-0001

Dictionaries and Hash Tables 6

Hash Functions
•  A hash function is usually specified as the composition of two

functions:

 The hash code map is applied first, and the compression map is
applied next on the result

h(x) = h2(h1(x))

•  The goal of the hash function is to “disperse” the keys in an

apparently random way

Hash code map
h1: keys → integers

Compression map
h2: integers → [0, N - 1]

Hash Code Maps: keys → integers

Memory address
•  reinterpret the memory address of the key object as an integer
•  default hash code of Java objects
•  disadvantage: two key objects with equal value have different hash

codes

Integer cast
•  reinterpret bits of the key as an integer
•  suitable for smaller keys (when number of bits in the key is at most

the number of bits in an integer)

Dictionaries & Hash Tables 7

Hash Code Maps: keys → integers

Component sum
•  suitable for larger keys
•  partition bits of the key into components of fixed length and sum the

components
•  disadvantage: many strings will have the same sum

 h1(k) = a0 + a1 + a2 + … + an-1

Polynomial accumulation
•  good for strings
•  partition bits of the key into components of fixed length and

evaluate the polynomial
 h1(k) = a0 + a1 z + a2 z2 + … + an-1zn-1

 Dictionaries & Hash Tables 8

Compression Maps: integers → [0,Ν-1]
A good hash function guarantees the probability that two different keys
have the same hash is 1/N

Division
•  h2 (y) = y mod N
•  The size N of the hash table is usually chosen to be a prime
•  The reason involves number theory and is beyond the scope of this

course
•  disadvantage: repeated keys of the form iN + j cause collisions

Multiply, Add and Divide (MAD)
•  h2 (y) = (ay + b) mod N
•  a and b are nonnegative integers such that a mod N ≠ 0

(otherwise, every integer would map to the same value b)

Dictionaries & Hash Tables 9

Dictionaries and Hash Tables 10

Collision Handling
Collisions occur when different elements are mapped to the same cell

Chaining
•  each cell in the table points to a linked list of elements that map there
•  simple, but requires additional memory outside the table

Open Addressing
•  the colliding item is placed in a different cell of the table
•  no additional memory, but complicates searching/removing
•  common types: linear probing, quadratic probing, double hashing

∅

∅
∅

0
1
2
3
4 451-22-0004 981-10-0004

025-61-0001

Dictionaries and Hash Tables 11

Open Addressing: Linear Probing
•  Placing the colliding item in the next (circularly) available table cell

 try A[(h(k) + i) mod N] for i = 0,1,2,…
•  Colliding items cluster together, causing future collisions to cause a

longer sequence of probes (searches for next available cell)

•  Example:
–  h(x) = x mod 13
–  Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

 41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

18 mod 13 = 5
41 mod 13 = 2
22 mod 13 = 9
44 mod 13 = 5
59 mod 13 = 7
32 mod 13 = 6
31 mod 13 = 5
73 mod 13 = 8

Dictionaries and Hash Tables 12

Search with Linear Probing
Consider a hash table A that uses linear
probing

findElement(k)
•  Start at cell h(k)
•  Check consecutive locations until one of

the following occurs
–  An item with key k is found, or
–  An empty cell is found, or
–  N cells have been unsuccessfully

probed

Algorithm findElement(k)
 i ← h(k)
 p ← 0
 repeat
 c ← A[i]
 if c = ∅

return NO_SUCH_KEY
 else if c.key () = k
 return c.element()
 else
 i ← (i + 1) mod N

 p ← p + 1
until p = N
return NO_SUCH_KEY

Dictionaries and Hash Tables 13

Updates with Linear Probing
A special object, called AVAILABLE, replaces deleted elements

•  removeElement(k)

–  Search for an item with key k
–  If it is found, replace it with item AVAILABLE and return element
–  Else, return NO_SUCH_KEY

•  insert Item(k, o)
–  Throw an exception if the table is full
–  Start at cell h(k)
–  Search consecutive cells until a cell i is found that is either empty or

stores AVAILABLE
–  Store item (k, o) in cell i

Dictionaries and Hash Tables 14

Open Addressing: Double Hashing
•  Use a secondary hash function d(k) to place items in first available cell

 try A[(h(k) + id(k)) mod N] for i = 0,1,2,…
•  d(k) cannot have zero values

•  The table size N must be a prime to allow probing of all the cells

•  Common choice of compression map for the secondary hash function:
 d2(k) = q - k mod q where q < N and q is a prime
–  The possible values are

 1, 2, … , q

Dictionaries and Hash Tables 15

Consider a hash table storing integer keys that handles collision with
double hashing

–  N = 13
–  h(k) = k mod 13
–  d(k) = 7 - k mod 7

Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k) d (k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

Dictionaries and Hash Tables 16

Performance of Hashing
•  In the worst case, searches, insertions and removals on a hash table take

O(n) time
–  occurs when all inserted keys collide

•  The load factor α = n/N affects the performance of a hash table
–  Assuming that the hash values are like random numbers, it can be

shown that the expected number of probes for an insertion with
open addressing is 1 / (1 - α)

–  The expected running time of all the dictionary ADT operations in a
hash table is O(1)

•  In practice, hashing is very fast provided the load factor is not close to
100%

Dictionaries and Hash Tables 17

Universal Hashing
A family of hash functions is universal if for any 0 ≤ j,k ≤ M-1,

 Pr(h(j)=h(k)) ≤ 1/N

Theorem: The set of all functions, h, as defined below, is universal.
•  Choose p as a prime between M and 2M
•  Randomly select 0 < a < p and 0 ≤ b < p
•  Define h(k)=(ak+b mod p) mod N

