
Design and Analysis of Algorithms - Midterm Overview

Analysis of Algorithms
• Definition of O, Θ, Ω
• Show that f(n) is O(g(n))
• Express the runtime of an algorithm in Big-Oh notation.

For each data structure, know its definition, what operations can be performed on it and the
complexity of those operations.

Elementary Data Structures
• For each data structure, know the operations and complexity of operations
• Stack and Queue

- implementations using array or linked list
- resizing and amortized analysis for stack operations

• List, Vector, and Sequence
- implementations using array or linked list

• Trees
- traversals (preorder, postorder)
- representations/implementation using linked structures

• Binary Trees
- traversals (inorder, Euler tour)
- representation/implementation using linked structures or an array

• Priority Queues
- implementation using a sorted/unsorted sequence
- sorting using a priority queue - selection sort, insertion sort

• Heaps
- definition (heap order property: key(v) ≥ key(parent(v)), and complete binary tree)
- height
- heap-sort (algorithm and analysis)
- implementation using a vector
- bottom-up heap construction (algorithm and analysis)

• Dictionaries (unordered - log-files and hash tables; ordered - lookup table and search trees)
- log-file (unsorted sequence implementation)
- hash tables

• hash functions (hash code map, compression map)
• insert/search/remove using chaining, linear probing, double hashing as

collision handling strategies
• performance in relation to load factor
• definition of universal hashing

- lookup table (sorted sequence implementation)
• binary search

Search Trees
• Binary Search Trees

- definition
- operations and run-times: insert, find, remove
- height

• Balanced Binary Search Trees
- Red-Black trees

• definition (BST, root property, external nodes property, internal nodes
property, depth property)

• height
• operations and run-times: insert, find, remove

Sorting and Selection
• Merge Sort

- divide and conquer technique
- merging sorted lists
- algorithm
- analysis: O(n logn)

• Quick Sort
- pivot, partition
- algorithm
- analysis: O(n2) worst case, O(nlogn) expected

• Comparison of sorting algorithms
• Lower bound on sorting
• Set data structure

- implementation with sorted sequence
- operations using generic merge
- run-times

• Bucket and Radix Sort
- bucket-sort algorithm (stable) and run-time
- lexicographic sort
- radix-sort algorithm and run-time

• Selection
- problem formulation
- quick-select algorithm
- expected run-time

