An experiment is a procedure that yields one of a given set of possible outcomes.
The sample space (S) of the experiment is the set of possible outcomes
An event (E) is a subset of the sample space.
assumes outcomes are equally likely
Laplace's Definition: If S is a finite sample space of equally likely outcomes, and E is an event (a subset of S), then the probability of E is

$$
p(E)=\frac{|E|}{|S|}
$$

- For every event $E, 0 \leq p(E) \leq 1$.

General definition

- Assigning probabilities: $0 \leq p(s) \leq 1$ for each $s \in S$, and $\sum_{s \in S} p(s)=1$
- $p(S)$ is the probability distribution
- The uniform distribution assigns the probability $1 / n$ to each $s \in S$
- The probability of an event is $p(E)=\sum_{s \in E} p(s)$

Complements: $p(\bar{E})=1-p(E)$.
Unions: $p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)$

- If E_{1}, E_{2}, \ldots is a sequence of pairwise disjoint events, then

$$
p\left(\bigcup_{i} E_{i}\right)=\sum_{i} p\left(E_{i}\right)
$$

Conditional Probability: Let E and F be events with $\mathrm{p}(F)>0$. The conditional probability of E given F is

$$
p(E \mid F)=\frac{p(E \cap F)}{p(F)}
$$

Independence: The events E and F are independent if and only if $p(E \cap F)=p(E) p(F)$.

- $E_{1}, E_{2}, \ldots, E_{n}$ are pairwise independent if and only if $p\left(E_{i} \cap E_{j}\right)=p\left(E_{i}\right) \cdot p\left(E_{j}\right)$ for all pairs i and j with $i \leq j \leq n$.
- $E_{1}, E_{2}, \ldots, E_{n}$ are mutually independent if for all m such that $2 \leq m \leq n, \quad p\left(E_{1} \cap E_{2} \cap \ldots \cap E_{m}\right)=p\left(E_{1}\right) \cdot p\left(E_{2}\right) \cdot \ldots \cdot p\left(E_{m}\right)$
- A Bernoulli trial is a random experiment with exactly two possible outcomes (success with probability p, and failure with probability q)
- The probability of exactly k successes in n independent Bernoulli trials is $C(n, k) p^{k} q^{n-k}$
- A random variable X is a function from the sample space to the set of real numbers.
- The expected value of a random variable X is equivalently:
- $E(X)=\sum_{s \in S} p(s) X(s) \quad$ (calculated per outcome)
- $E(X)=\sum_{r \in X(S)} p(X=r) r . \quad$ (calculated per random var value)
- When X represents the number of successes after n Bernoulli trials,
$E(X)=n p$
- $E\left(X_{1}+X_{2}+\ldots .+X_{n}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)+\ldots .+E\left(X_{n}\right)$
- $E(a X+b)=a E(X)+b$.
- Random variables X and Y are independent if $p\left(X=r_{1}\right.$ and $\left.Y=r_{2}\right)=p\left(X=r_{1}\right) \cdot p\left(Y=r_{2}\right)$
- If X and Y are independent variables on a sample space S, then $E(X \cdot Y)=E(X) \cdot E(Y)$.

