Recursive Definition

Recursively defined functions

- Basis Step: Specify the value of the function at 0 .
- Recursive Step: Give a rule for finding $f(n+1)$ from the function's value at smaller integers.
proving things about recursively defined functions (or recurrent relations describing sequences)

Recursively defined sets

- Basis Step: Specify an initial collection of elements.
- Recursive Step: Give a rule for forming new elements in the set from those already known to be in the set

Proof technique for it

> Mathematical Induction Rule of Inference $(P(b) \wedge \forall k \geq b(P(k) \rightarrow P(k+1))) \rightarrow \forall n \geq b P(n)$

Prove by mathematical induction that $\forall n \geq b P(n)$

- Basis Step: Prove P(b).
- Inductive Step: Prove $P(k) \rightarrow P(k+1)$ for $k \geq b$. Use a direct proof. Assume the inductive hypothesis - that $P(k)$ for $k \geq b$. Use this to show $P(k+1)$.
By mathematical induction, $P(n)$ is true for all $n \geq b$.

Prove by structural induction that $\mathrm{P}(\mathrm{n})$ for all sets or

structures S

- Basis Step: Prove $P(n)$ is true for all elements specified in the basis step of the recursive definition of S
- Recursive Step: Prove that if $P(n)$ is true for each of the elements used to construct new elements in the recursive step of the definition of S, then $P(n)$ is also true for the new elements created. Use a direct proof.
By structural induction, $\mathrm{P}(\mathrm{n})$ is true for all sets/ structures S

