Show your work.

Section 1.7

6. Use a direct proof to show that the product of two odd numbers is odd.
7. Prove or disprove that the product of a nonzero rational number and an irrational number is irrational.
8. Prove that if n is an integer and $3 n+2$ is even, then n is even using
a) a proof by contraposition.
b) a proof by contradiction.
9. Show that at least three of any 25 days chosen must fall in the same month of the year.
10. Prove that if n is a positive integer, then n is even if and only if $7 n+4$ is even.

Section 1.8

4. Use a proof by cases to show that $\min (a, \min (b, c))=\min (\min (a, b), c)$ whenever a, b, and c are real numbers.
5. Prove using the notion of without loss of generality that $5 x+5 y$ is an odd integer when x and y are integers of opposite parity.
6. Prove that there is a positive integer that equals the sum of the positive integers not exceeding it. Is your proof constructive or nonconstructive?
7. Show that if a, b, and c are real numbers and $a \neq 0$, then there is a unique solution of the equation $a x+b=c$.
