## Binomial Coefficients and Identities

Section 6.4

## Section Summary

- The Binomial Theorem
- Pascal's Identity and Triangle


## Powers of Binomial Expressions

Definition: A binomial expression is the sum of two terms, such as $x+y$. (More generally, these terms can be products of constants and variables.)

- We can use counting principles to find the coefficients in the expansion of $(x+y)^{n}$ where n is a positive integer.

Example: Expand $(x+y)^{3}$

$$
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

continued $\rightarrow$

## Powers of Binomial Expressions

$$
\begin{aligned}
(x+y)^{3} & =(x+y)(x+y)(x+y) \\
& =(x x+x y+y x+y y)(x+y) \\
& =x x x+x x y+x y x+x y y+y x x+y x y+y y x+y y y \\
& =x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
\end{aligned}
$$

How many ways are there to get the terms


## Binomial Theorem

Binomial Theorem: Let $x$ and $y$ be variables, and $n$ a nonnegative integer. Then:
$(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n}$.
Proof: We use combinatorial reasoning. The terms in the expansion of $(x+y)^{n}$ are of the form $x^{n-j} y^{j}$ for $j=0,1,2, \ldots, n$. To form the term $x^{n-j} y^{j}$, it is necessary to choose $n-j x$ 's from the $n$ sums. Therefore, the coefficient of $X^{n-j} y^{j}$ is $\binom{n}{n-j}$, which equals $\binom{n}{j}$.

## Using the Binomial Theorem

 Example: What is the expansion of $(x+y)^{4}$ ?Solution: From the binomial theorem, we know that

$$
\begin{aligned}
(x+y)^{4} & =\sum_{j=0}^{4}\binom{4}{j} x^{4-j} y^{j} \\
& =\binom{4}{0} x^{4}+\binom{4}{1} x^{3} y+\binom{4}{2} x^{2} y^{2}+\binom{4}{3} x y^{3}+\binom{4}{4} y^{4} \\
& =x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}
\end{aligned}
$$

## Using the Binomial Theorem

Example: What is the coefficient of $x^{12} y^{13}$ in the expansion of $(2 x-3 y)^{25}$ ?

Solution: We view the expression as $(2 x+(-3 y))^{25}$. By the binomial theorem

$$
(2 x+(-3 y))^{25}=\sum_{j=0}^{25}\binom{25}{j}(2 x)^{25-j}(-3 y)^{j} .
$$

The coefficient of $x^{12} y^{13}$ in the expansion is obtained when $j=13$.

$$
\binom{25}{13} 2^{12}(-3)^{13}=-\frac{25!}{13!12!} 2^{12} 3^{13} .
$$

## A Useful Identity

Corollary 1: With $n \geq 0, \sum_{k=0}^{n}\binom{n}{k}=2^{n}$.

Proof (using binomial theorem): With $x=1$ and $y=1$, from the binomial theorem we see that:

$$
2^{n}=(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} 1^{k} 1^{(n-k)}=\sum_{k=0}^{n}\binom{n}{k} .
$$

## A Useful Identity

Corollary 1: With $n \geq 0, \sum_{k=0}^{n}\binom{n}{k}=2^{n}$.
Proof (combinatorial): Consider the subsets of a set with $n$ elements. There are $\binom{n}{0}$ subsets with zero elements, $\binom{n}{1}$ with one element, $\binom{n}{2}$ with two elements, $\ldots$, and $\binom{n}{n}$ with $n$ elements. Therefore the total is

$$
\sum_{k=0}^{n}\binom{n}{k} .
$$

Since, we know that a set with $n$ elements has $2^{n}$ subsets, we conclude: $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.

## Pascal's Identity

Pascal's Identity: If $n$ and $k$ are integers with $n \geq k \geq 0$, then

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

Proof (combinatorial): Let $T$ be a set where $|T|=n+1, a \in T$, and $S=T-\{\mathrm{a}\}$. There are $\binom{n+1}{k}$ subsets of $T$ containing $k$ elements. Each of these subsets either:

- contains $a$ with $k-1$ other elements, or
- contains $k$ elements of $S$ and not $a$.

There are

- ( $\left.\begin{array}{c}n \\ k-1\end{array}\right)$ subsets of $k$ elements that contain $a$, since there are $\binom{n}{k-1}$ subsets of $k-1$ elements of $S$,
- ( $\left.\begin{array}{c}n \\ k\end{array}\right)$ subsets of $k$ elements of $T$ that do not contain $a$, because there are $\binom{n}{k}$ subsets of k elements of S .
Hence,

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k} .
$$

See Exercise 19 for an algebraic proof.

## Pascal's Triangle

$\binom{0}{0}$
The $n$th row in
the triangle
consists of the
binomial
coefficients $\binom{n}{k}$,
$k=0,1, \ldots,, n$.


By Pascal's identity, adding two adjacent bionomial coefficients results is the binomial coefficient in the next row between these two coefficients.

## Pascal's Triangle

$$
\begin{aligned}
& \binom{0}{0} \\
& \binom{1}{0}\binom{1}{1} \\
& \binom{2}{0}\binom{2}{1}\binom{2}{2} \\
& \binom{3}{0}\binom{3}{1}\binom{3}{2}\binom{3}{3} \\
& \binom{4}{0}\binom{4}{1}\binom{4}{2}\binom{4}{3}\binom{4}{4} \\
& \binom{5}{0}\binom{5}{1}\binom{5}{2}\binom{5}{3}\binom{5}{4}\binom{5}{5} \\
& \binom{6}{0}\binom{6}{1}\binom{6}{2}\binom{6}{3}\binom{6}{4}\binom{6}{5}\binom{6}{6} \\
& \binom{7}{0}\binom{7}{1}\binom{7}{2}\binom{7}{3}\binom{7}{4}\binom{7}{5}\binom{7}{6}\binom{7}{7} \\
& \binom{8}{0}\binom{8}{1}\binom{8}{2}\binom{8}{3}\binom{8}{4}\binom{8}{5}\binom{8}{6}\binom{8}{7}\binom{8}{8} \\
& (x+y)^{6}=1 x^{6}+6 x^{5} y+15 x^{4} y^{2}+20 x^{3} y^{3}+15 x^{2} y^{4}+6 x y^{5}+1 y^{6}
\end{aligned}
$$

