Sets

Section 2.1

Section Summary

- Definition of sets
- Describing Sets
- Roster Method
- Set-Builder Notation
- Some Important Sets in Mathematics
- Empty Set and Universal Set
- Subsets and Set Equality
- Cardinality of Sets
- Tuples
- Cartesian Product

Introduction

- Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.
- Important for counting.
- Programming languages have set operations.
- Set theory is an important branch of mathematics.
- Many different systems of axioms have been used to develop set theory.
- Here we are not concerned with a formal set of axioms for set theory. Instead, we will use what is called naïve set theory.

Sets

- A set is an unordered collection of objects.
- the students in this class
- the chairs in this room
- The objects in a set are called the elements, or members of the set. A set is said to contain its elements.
- The notation $a \in A$ denotes that a is an element of the set A.
- If a is not a member of A, write $a \notin A$

Describing a Set: Roster Method
 - $S=\{a, b, c, d\}$

- Order not important

$$
S=\{a, b, c, d\}=\{b, c, a, d\}
$$

- Each distinct object is either a member or not; listing more than once does not change the set.

$$
S=\{a, b, c, d\}=\{a, b, c, b, c, d\}
$$

- Elipses (...) may be used to describe a set without listing all of the members when the pattern is clear.

$$
S=\{a, b, c, d, \ldots . . ., z\}
$$

Roster Method

- Set of all vowels in the English alphabet:

$$
V=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}
$$

- Set of all odd positive integers less than 10:

$$
O=\{1,3,5,7,9\}
$$

- Set of all positive integers less than 100:

$$
S=\{1,2,3, \ldots, 99\}
$$

- Set of all integers less than 0 :

$$
S=\{\ldots,-3,-2,-1\}
$$

Some Important Sets

$\mathrm{N}=$ natural numbers $=\{0,1,2,3 \ldots$.
$\mathrm{Z}=$ integers $=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathrm{Z}^{+}=$positive integers $=\{1,2,3, \ldots .$.
$\mathbf{R}=$ set of real numbers
$\mathrm{R}^{+}=$set of positive real numbers
$\mathrm{C}=$ set of complex numbers.
$\mathbf{Q}=$ set of rational numbers

Set-Builder Notation

- Specify the property or properties that all members must satisfy:
$S=\{x \mid x$ is a positive integer less than 100 $\}$
$O=\{x \mid x$ is an odd positive integer less than 10 $\}$ $O=\left\{x \in \mathrm{Z}^{+} \mid x\right.$ is odd and $\left.x<10\right\}$
- A predicate may be used:

$$
S=\{x \mid \mathrm{P}(x)\}
$$

- Example: $S=\{x \mid \operatorname{Prime}(x)\}$
- Positive rational numbers:

$$
\mathbf{Q}^{+}=\{x \in \mathbf{R} \mid x=p / q \text {, for some positive integers } p, q\}
$$

Interval Notation

$[a, b]=\{x \mid a \leq x \leq b\}$

$[a, b)=\{x \mid a \leq x<b\}$
$(a, b]=\{x \mid a<x \leq b\}$

$(a, b)=\{x \mid a<x<b\}$

closed interval [abb]
open interval (abb)

Universal Set and Empty Set

- The universal set U is the set containing everything currently under consideration.
- Sometimes implicit

Venn Diagram

- Sometimes explicitly stated.
- Contents depend on the context.
- The empty set is the set with no elements. Symbolized \emptyset, but $\}$ also used.

John Venn (1834-1923) Cambridge, UK

Russell's Paradox

- Let S be the set of all sets which are not members of themselves. A paradox results from trying to answer the question "Is S a member of itself?"
- Related Paradox:
- Henry is a barber who shaves all people who do not shave themselves. A paradox results from trying to answer the question "Does Henry shave himself?"

Bertrand Russell (1872-1970)
Cambridge, UK
Nobel Prize Winner

Some things to remember

- Sets can be elements of sets.
$\{\{1,2,3\}, a,\{b, c\}\}$
\{N,Z,Q,R\}
- The empty set is different from a set containing the empty set.

$$
\emptyset \neq\{\varnothing\}
$$

Set Equality

Definition: Two sets are equal if and only if they have the same elements.

- Therefore if A and B are sets, then A and B are equal if and only if $\forall x(x \in A \leftrightarrow x \in B)$
- We write $A=B$ if A and B are equal sets.

$$
\begin{aligned}
& \{1,3,5\}=\{3,5,1\} \\
& \{1,5,5,5,3,3,1\}=\{1,3,5\}
\end{aligned}
$$

Subsets

Definition: The set A is a subset of B, if and only if every element of A is also an element of B.

- The notation $A \subseteq B$ is used to indicate that A is a subset of the set B.
- $A \subseteq B$ holds if and only if $\forall x(x \in A \rightarrow x \in B)$ is true.

1. Because $a \in \emptyset$ is always false, $\emptyset \subseteq S$, for every set S.
2. Because $a \in S \rightarrow a \in S, S \subseteq S$, for every set S.

Showing a Set is or is not a Subset

 of Another Set- A is a Subset of \mathbf{B} : To show $A \subseteq B$, show that if x belongs to A, then x also belongs to B.
- A is not a Subset of \mathbf{B} : To show $A \nsubseteq B$, find an element $x \in A$ such that $x \notin B$. (Such an x is a counterexample to the claim that $x \in A$ implies $x \in B$.) Examples:

1. The set of all computer science majors at your school is a subset of all students at your school.
2. The set of integers with squares less than 100 is not a subset of the set of nonnegative integers.

Another look at Equality of Sets

- Recall that two sets A and B are equal, denoted by $A=B$, iff

$$
\forall x(x \in A \leftrightarrow x \in B)
$$

- Using logical equivalences we have that $A=B$ iff

$$
\forall x[(x \in A \rightarrow x \in B) \wedge(x \in B \rightarrow x \in A)]
$$

- This is equivalent to

$$
A \subseteq B \quad \text { and } \quad B \subseteq A
$$

Proper Subsets

Definition: If $A \subseteq B$, but $A \neq B$, then we say A is a proper subset of B, denoted by $A \subset B$. If $A \subset B$, then

$$
\forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A)
$$

is true.

Venn Diagram

Set Cardinality

Definition: If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is finite. Otherwise it is infinite.
Definition: The cardinality of a finite set A, denoted by $|A|$, is the number of (distinct) elements of A.

Examples:

1. $|\varnothing|=0$
2. Let S be the letters of the English alphabet. Then $|S|=26$
3. $|\{1,2,3\}|=3$
4. $|\{\varnothing\}|=1$
5. The set of integers is infinite.

Power Sets

Definition: The set of all subsets of a set A, denoted $\mathrm{P}(A)$, is called the power set of A.
Example: If $A=\{\mathrm{a}, \mathrm{b}\}$ then

$$
\mathcal{P}(\mathrm{A})=\{\varnothing,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{~b}\}\}
$$

- If a set has n elements, then the cardinality of the power set is 2^{n}. (In Chapters 5 and 6 , we will discuss different ways to show this.)

Tuples

- The ordered n-tuple $\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . ., \mathrm{a}_{n}\right)$ is the ordered collection that has a_{1} as its first element and a_{2} as its second element and so on until a_{n} as its last element.
- Two n-tuples are equal if and only if their corresponding elements are equal.
- 2-tuples are called ordered pairs.
- The ordered pairs (a, b) and (c, d) are equal if and only if $a=c$ and $b=d$.

Cartesian Product

Definition: The Cartesian Product of two sets A and B, denoted by $A \times B$ is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$.

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

Example:

$$
\begin{aligned}
& A=\{a, b\} \quad B=\{1,2,3\} \\
& A \times B=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\} \\
& B \times A=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}
\end{aligned}
$$

- Definition: A subset R of the Cartesian product $A \times B$ is called a relation from the set A to the set B. (Relations will be covered in depth in Chapter 9.)

Cartesian Product

Definition: The cartesian products of the sets $A_{1}, A_{2}, \ldots \ldots, A_{n}$, denoted by $A_{1} \times A_{2} \times \ldots . . \times A_{n}$, is the set of ordered n-tuples ($a_{1}, a_{2}, \ldots \ldots, a_{n}$) where a_{i} belongs to A_{i} for $i=1, \ldots n$.

$$
\begin{aligned}
& A_{1} \times A_{2} \times \cdots \times A_{n}= \\
& \quad\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i} \text { for } i=1,2, \ldots n\right\}
\end{aligned}
$$

Example: What is $A \times B \times \mathrm{C}$ where $A=\{0,1\}, B=\{1,2\}$ and $C=\{0,1,2\}$
Solution: $A \times B \times C=\{(0,1,0),(0,1,1),(0,1,2),(0,2,0),(0,2,1)$, $(0,2,2),(1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1),(1,2,2)\}$

Set Notation with Quantifiers

- $\forall x \in S(P(x))$ is shorthand for $\forall x(x \in S \rightarrow P(x))$
- $\exists x \in \mathrm{~S}(P(x))$ is shorthand for $\exists x(x \in \mathrm{~S} \wedge P(x))$

Example: Express the following in English

1. $\forall x \in \mathbf{R}\left(x^{2} \geq 0\right)$

- "The square of every real number is nonnegative."

2. $\exists x \in \mathbf{Z}\left(x^{2}=1\right)$

- "There is an integer whose square is one."

Truth Sets of Quantifiers

- Given a predicate P and a domain D, we define the truth set of P to be the set of elements in D for which $P(x)$ is true. The truth set of $P(\mathrm{x})$ is denoted by

$$
\{x \in D \mid P(x)\}
$$

- Example: The truth set of $P(x)$ where the domain is the integers and $P(x)$ is " $|x|=1$ " is the set $\{-1,1\}$

