Functions

Section 2.3

Section Summary

- Definition of a Function.
 - Domain, Codomain
 - Image, Preimage
- Injection, Surjection, Bijection
- Inverse Function
- Function Composition
- Graphing Functions
- Floor, Ceiling, Factorial

Functions

Definition: Let *A* and *B* be nonempty sets. A *function f* from *A* to *B*, denoted $f: A \rightarrow B$ is an assignment of each element of *A* to exactly one element of *B*. We write f(a)=b if *b* is the unique element of *B* assigned by the function *f* to the element *a* of *A*.

 Functions are sometimes called *mappings* or *transformations*.

Given a function $f: A \rightarrow B$

- We say *f maps A* to *B* or *f* is a *mapping* from *A* to *B*.
- *A* is called the *domain* of *f*.
- *B* is called the *codomain* of *f*.
- If f(a) = b,
 - then *b* is called the *image* of *a* under *f*.
 - *a* is called the *preimage* of *b*.
- The *range* of *f* is the set of all images of points in **A** under *f*. We denote it by *f*(*A*).
- Two functions are *equal* when they have the same domain, the same codomain, and map each element of the domain to the same element of the codomain.

Representing Functions

Functions may be specified in different ways:

- An explicit statement of the assignment. Students and grades example.
- A formula.

f(x) = x + 1

• A computer program.

A C++ program that when given an integer *n*, produces the *n*th Fibonacci Number (covered in the next section and also in Ch. 5).

f(a) = ? z

The image of d is ? z

The domain of f is ? A

The codomain of f is ? **B**

The preimage of y is ? b

 $f(A) = ? \{y,z\}$

The preimage(s) of z is (are) ? {a,c,d}

Question on Functions and Sets • If $f : A \rightarrow B$ and S is a subset of A, then

Injections

Definition: A function f is said to be *one-to-one*, or *injective*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be an *injection* if it is one-to-one.

Surjections

Definition: A function f from A to B is called *onto* or *surjective*, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called a *surjection* if it is onto.

Bijections

Definition: A function f is a *one-to-one correspondence*, or a *bijection*, if it is both one-to-one and onto (surjective and injective).

Showing that *f* is injective or surjective

Suppose that $f : A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Showing that *f* is injective or surjective

- **Ex 1**: Let *f* be the function from $\{a,b,c,d\}$ to $\{1,2,3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is *f* a **surjective** (onto) function?
 - **Solution**: Yes, *f* is surjective since all three elements of the codomain are images of elements in the domain. If the codomain were changed to {1,2,3,4}, *f* would not be onto.

Ex 2: Is the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$, where $f(x) = x^2$ surjective?

Solution: No, *f* is not surjective because there is no integer *x* with $x^2 = -1$, for example.

Inverse Functions

Definition: Let *f* be a bijection from *A* to *B*. Then the *inverse* of *f*, denoted f^{-1} , is the function from *B* to *A* defined as $f^{-1}(y) = x$ iff f(x) = yNo inverse exists unless *f* is a bijection. Why?

Inverse Functions

Ex 1: Let *f* be the function from $\{a,b,c\}$ to $\{1,2,3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible and if so what is its inverse?

Solution: The function *f* is invertible because it both injective and surjective. The inverse function $f^{_1}$ reverses the correspondence given by *f*, so $f^{_1}(1) = c$, $f^{_1}(2) = a$, and $f^{_1}(3) = b$.

Ex 2: Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if so, what is its inverse?

Solution: The function *f* is invertible because it is a bijection. The inverse function $f^{_1}$ reverses the correspondence so $f^{_1}(y) = y - 1$.

Ex 3: Let $f: \mathbf{R} \to \mathbf{R}$ be such that $f(x) = x^2$. Is f invertible, and if so, what is its inverse?

Solution: The function *f* is not invertible because it is not surjective.

Composition

• **Definition**: Let $f: B \to C, g: A \to B$. The *composition of f with g*, denoted $f \circ g$ is the function from *A* to *C* defined by $(f \circ g)(a) = f(g(a))$

Composition

Composition Questions Ex 1: If $f(x) = x^2$ and g(x) = 2x + 1, then and $f(g(x)) = (2x + 1)^2$

$$g(f(x)) = 2x^2 + 1$$

Composition Questions

Ex 2: Let *g* be the function from the set $\{a,b,c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let *f* be the function from the set $\{a,b,c\}$ to the set $\{1,2,3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1.

What is the composition of f with g, and what is the composition of g with f.

Solution: The composition *f*•*g* is defined by

 $f \circ g(a) = f(g(a)) = f(b) = 2.$ $f \circ g(b) = f(g(b)) = f(c) = 1.$ $f \circ g(c) = f(g(c)) = f(a) = 3.$

Note that *g* of is not defined, because the range of *f* is not a subset of the domain of *g*.

Composition Questions

Ex 2: Let f and g be functions from the set of integers to the set of integers defined by f(x)=2x + 3 and g(x)=3x + 2.

What is the composition of f with g, and also the composition of g with f?

Solution:

 $f \circ g(x) = f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7$ $g \circ f(x) = g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11$

Graphs of Functions

• Let *f* be a function from the set *A* to the set *B*. The *graph* of the function *f* is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } f(a) = b\}.$

Graph of f(n) = 2n + 1from Z to Z

Graph of $f(x) = x^2$ from Z to Z

Some Important Functions

- The *floor* function, denoted $f(x) = \lfloor x \rfloor$ is the largest integer less than or equal to *x*.
- The *ceiling* function, denoted $f(x) = \lceil x \rceil$ is the smallest integer greater than or equal to x

Ex:
$$[3.5] = 4$$
 $[3.5] = 3$
 $[-1.5] = -1$ $[-1.5] = -2$

Floor and Ceiling Functions

Graph of (a) Floor and (b) Ceiling Functions

Floor and Ceiling Functions

TABLE 1 Useful Properties of the Floorand Ceiling Functions.

(*n* is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n + 1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n - 1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x - 1 < n \le x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x + 1$

$$(2) \quad x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

(3a)
$$\lfloor -x \rfloor = -\lceil x \rceil$$

(3b) $\lceil -x \rceil = -\lfloor x \rfloor$

(4a)
$$\lfloor x + n \rfloor = \lfloor x \rfloor + n$$

(4b) $\lceil x + n \rceil = \lceil x \rceil + n$

Proving Properties of Functions

Ex: Prove that if x is a real number, then

[2x] = [x] + [x + 1/2]

Solution: Let $x = n + \varepsilon$, where *n* is an integer and $0 \le \varepsilon < 1$. *Case 1*: $0 \le \varepsilon < \frac{1}{2}$

- $2x = 2n + 2\varepsilon$ and $\lfloor 2x \rfloor = 2n$, since $0 \le 2\varepsilon < 1$.
- [x + 1/2] = n, since $x + \frac{1}{2} = n + (1/2 + \varepsilon)$ and $0 \le \frac{1}{2} + \varepsilon < 1$.
- Hence, [2x] = 2n and [x] + [x + 1/2] = n + n = 2n.

Case 2: $\frac{1}{2} \le \varepsilon < 1$

- $2x = 2n + 2\varepsilon = (2n + 1) + (2\varepsilon 1)$ and [2x] = 2n + 1, since $0 \le 2\varepsilon - 1 < 1$.
- $[x+1/2] = [n+(1/2+\epsilon)] = [n+1+(\epsilon-1/2)] = n+1$ since $0 \le \epsilon 1/2 < 1$.
- Hence, [2x] = 2n + 1 and [x] + [x + 1/2] = n + (n + 1) = 2n + 1.

Factorial Function

Definition: The factorial function $f: \mathbb{N} \to \mathbb{Z}^+$, denoted by f(n) = n! is the product of the first *n* positive integers when *n* is a nonnegative integer.

$$f(n) = 1 \cdot 2 \cdots (n-1) \cdot n, \qquad f(0) = 0! = 1$$

Examples:

Stirling's Formula:

f(1) = 1! = 1 $f(2) = 2! = 1 \cdot 2 = 2$ $n! \sim \sqrt{2\pi n} (n/e)^n$ $f(n) \sim g(n) \doteq \lim_{n \to \infty} f(n)/g(n) = 1$

 $f(6) = 6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 720$ f(20) = 2,432,902,008,176,640,000.