Graphs

Outline / Reading

Graphs (6.1)

- Definition
- Applications
- Terminology
- Properties
- ADT

Data structures for graphs (6.2)

- Edge list structure
- Adjacency list structure
- Adjacency matrix structure

Graph

A graph is a pair $(\boldsymbol{V}, \boldsymbol{E})$, where

- \boldsymbol{V} is a set of nodes, called vertices
- \boldsymbol{E} is a collection of pairs of vertices, called edges
- Vertices and edges are positions and store elements

Example:

- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route

Edge Types

Directed edge

- ordered pair of vertices $(\boldsymbol{u}, \boldsymbol{v})$
- first vertex \boldsymbol{u} is the origin
- second vertex \boldsymbol{v} is the destination
- e.g., a flight

- unordered pair of vertices $(\boldsymbol{u}, \boldsymbol{v})$

Undirected edge

- e.g., a flight route

Directed graph

- all the edges are directed
- e.g., flight network

Undirected graph

- all the edges are undirected
- e.g., route network

Applications

- Electronic circuits
- Printed circuit board
- Integrated circuit
- Transportation networks
- Highway network
- Flight network
- Computer networks
- Local area network
- Internet
- Web
- Databases

- Entity-relationship diagram

Terminology

- End vertices (or endpoints) of an edge
- U and V are the endpoints of a
- Edges incident on a vertex
- a, d, and b are incident on V
- Adjacent vertices
- U and V are adjacent
- Degree of a vertex
- X has degree 5
- Parallel edges
- h and i are parallel edges

- Self-loop
$-j$ is a self-loop

Terminology (cont.)

Path

- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints

Simple path

- path such that all its vertices and edges are distinct

Examples

- $\mathrm{P}_{1}=(\mathrm{V}, \mathrm{b}, \mathrm{X}, \mathrm{h}, \mathrm{Z})$ is a simple path

- $\mathrm{P}_{2}=(\mathrm{U}, \mathrm{c}, \mathrm{W}, \mathrm{e}, \mathrm{X}, \mathrm{g}, \mathrm{Y}, \mathrm{f}, \mathrm{W}, \mathrm{d}, \mathrm{V})$ is a path that is not simple

Terminology (cont.)

Cycle

- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints

Simple cycle

- cycle such that all its vertices and edges are distinct

Examples

- $\mathrm{C}_{1}=(\mathrm{V}, \mathrm{b}, \mathrm{X}, \mathrm{g}, \mathrm{Y}, \mathrm{f}, \mathrm{W}, \mathrm{c}, \mathrm{U}, \mathrm{a}, \triangleleft)$ is a simple cycle

- $\mathrm{C}_{2}=(\mathrm{U}, \mathrm{c}, \mathrm{W}, \mathrm{e}, \mathrm{X}, \mathrm{g}, \mathrm{Y}, \mathrm{f}, \mathrm{W}, \mathrm{d}, \mathrm{V}, \mathrm{a}, \downarrow)$ is a cycle that is not simple

Properties

Property 1. In an undirected graph

$$
\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}
$$

Proof: each edge is counted twice

Property 2. In an undirected graph with no selfloops and no multiple edges

$$
\boldsymbol{m} \leq \boldsymbol{n}(\boldsymbol{n}-1) / 2
$$

Proof: each vertex has degree at most $(\boldsymbol{n}-1)$

What is the bound for a directed graph?

Notation

\boldsymbol{n} number of vertices
$\boldsymbol{m} \quad$ number of edges
$\operatorname{deg}(\boldsymbol{v})$ degree of vertex \boldsymbol{v}

Ex: $\boldsymbol{n}=4 ; \boldsymbol{m}=6$; $\operatorname{deg}(\boldsymbol{v})=3$

Main Methods of the Graph ADT

Vertices and edges

- are positions
- store elements

Accessor methods

- aVertex()
- incidentEdges(v)
- endVertices(e)
- isDirected(e)
- origin(e)
- destination(e)
- opposite(v, e)
- areAdjacent(v, w)

Update methods

- insertVertex(o)
- insertEdge(v, w, o)
- insertDirectedEdge(v, w, o)
- removeVertex(v)
- removeEdge(e)

Generic methods

- numVertices()
- numEdges()
- vertices()
- edges()

Data Structures

Structures to represent a graph:

1. Edge List
2. Adjacency List
3. Adjacency Matrix

Edge List Structure

E :

A container of edge objects, where each edge object references the origin and destination vertex object

Adjacency List Structure
 E :

An edge list structure, where additionally each vertex object v references an incidence container which stores references to the edges incident on v.

Adjacency Matrix Structure

		BOS	DFW	JFK	LAX	MIA	ORD	SFO
		0	1	2	3	4	5	6
BOS	0	\emptyset	\emptyset	$\begin{gathered} \text { NW } \\ 35 \end{gathered}$	\emptyset	$\begin{aligned} & \text { DL } \\ & 247 \end{aligned}$	\emptyset	\emptyset
DFW	1	\emptyset	\emptyset	\emptyset	$\begin{gathered} \text { AA } \\ 49 \end{gathered}$	\emptyset	$\begin{aligned} & \text { DL } \\ & 335 \end{aligned}$	\emptyset
JFK	2	\emptyset	$\begin{gathered} \text { AA } \\ 1387 \end{gathered}$	\emptyset	\emptyset	$\begin{aligned} & \text { AA } \\ & 903 \end{aligned}$	\emptyset	$\begin{gathered} \text { TW } \\ 45 \end{gathered}$
LAX	3	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	$\begin{aligned} & \text { UA } \\ & 120 \end{aligned}$	\emptyset
MIA	4	\emptyset	$\begin{aligned} & \text { AA } \\ & 523 \end{aligned}$	\emptyset	$\begin{aligned} & \text { AA } \\ & 411 \end{aligned}$	\emptyset	\emptyset	\emptyset
ORD	5	\emptyset	$\begin{aligned} & \text { UA } \\ & 877 \end{aligned}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
SFO	6	\emptyset						

A 2D array of all vertex pairs, where cell $\mathrm{A}[u, v]$ stores edge e incident on vertices u, v if such an edge exists.

Asymptotic Performance

\boldsymbol{n} vertices, \boldsymbol{m} edges \boldsymbol{n} no parallel edges no self-loops \& Bounds are "big-Oh"	Edge List	Adjacency List	Adjacency Matrix
Space	$\boldsymbol{n + \boldsymbol { m }}$	$\boldsymbol{n}+\boldsymbol{m}$	\boldsymbol{n}^{2}
incidentEdges (\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}
areAdjacent $(\boldsymbol{v}, \boldsymbol{w})$	\boldsymbol{m}	$\min (\operatorname{deg}(\boldsymbol{v}), \operatorname{deg}(\boldsymbol{w}))$	1
insertVertex (\boldsymbol{o})	1	1	\boldsymbol{n}^{2}
insertEdge $(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{o})$	1	1	1
removeVertex((\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}^{2}
removeEdge (\boldsymbol{e})	1	1	1

