
Selection

Selection Problem
• Given an integer k and n elements x1, x2, …, xn, taken from a

total order, find the k-th smallest element in this set.

• Of course, we can sort the set in O(n log n) time and then
index the k-th element.
– Ex when k=3:

5, 10, 6, 3, 14, 12, 2 à 2, 3, 5, 6, 10, 12, 14

• Can we solve the selection problem faster?

Selection 2

Quick-Select
A randomized selection algorithm based on the prune-and-search
paradigm:
• Prune: pick a random element x (called pivot) and partition S into

– L elements less than x
– E elements equal x
– G elements greater than x

• Search: depending on k, either answer is in E, or we need to recurse
in either L or G

3

x
x

L GE

|L| < k < |L|+|E|
(done)

k < |L|
k > |L|+|E|

k’ = k - |L| - |E|

Partition
We partition an input sequence as in
the quick-sort algorithm:
• Remove, in turn, each element y

from S and
• Insert y into L, E or G, depending

on the result of the comparison
with the pivot p

Each insertion and removal takes O(1)
time

Thus, the partition step of quick-select
takes O(n) time

Selection 4

Algorithm partition(S, p)
Input sequence S, pivot p
Output subsequences L, E, G of the

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ¬ empty sequences
while ¬S.isEmpty()

y ¬ S.remove(S.first())
if y < p

L.insertLast(y)
else if y = p

E.insertLast(y)
else { y > p }

G.insertLast(y)
return L, E, G

Selection 5

Quick-Select Visualization
An execution of quick-select can be visualized by a recursion path
• each node represents a recursive call of quick-select, and stores k and the

remaining sequence

k=5, S=(7 4 9 3 2 6 5 1 8)

5

k=2, S=(7 4 9 6 5 8)

k=2, S=(7 4 6 5)

k=1, S=(7 6 5)

Expected Running Time
Consider a recursive call of quick-select on a sequence of size s
• Good call: the sizes of L and G are each less than 3s/4
• Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
• 1/2 of the possible pivots cause good calls:

Selection 6

Good pivotsBad pivots Bad pivots

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 3 4 5 6 7 8 9 10 11 12 13 14 151

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Good call Bad call

Expected Running Time (2)
Probabilistic Fact #1: The expected number of coin tosses required in
order to get one head is two.
Probabilistic Fact #2: Expectation is a linear function:

– E(X + Y) = E(X) + E(Y)
– E(cX) = cE(X)

Let T(n) denote the expected running time of quick-select.
• By Fact #2,

– T(n) < T(3n/4) + bn*(expected # of calls before a good call)
• By Fact #1,

– T(n) < T(3n/4) + 2bn
• That is, T(n) is a geometric series:

– T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + …
• So T(n) is O(n).
Randomized quick-select runs in O(n) expected time. 7

Deterministic Selection
We can do selection in O(n) worst-case time.

Main idea: recursively use the selection algorithm itself to find a good
pivot for quick-select
• Divide S into n/5 sets of 5 each
• Find a median in each set
• Recursively find the median of the “baby” medians.
• Use median of medians as a guaranteed good pivot

See Exercise C-4.24 for details of analysis.
Selection 8

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Min size
for L

Min size
for G

