
Dictionaries

Dictionaries and Hash Tables 2

Dictionary ADT
• Models a searchable collection of key-element items called entries

• Main operations: find, insert, remove
– findElement(k), insertItem(k, o), removeElement(k)
– size(), isEmpty()
– keys(), elements()

• Applications:
– address book
– word-definition pairs
– mapping host names to internet addresses (e.g., www.cs16.net to

128.148.34.101)

Dictionaries and Hash Tables 3

Log File
• A log file is a dictionary implemented by means of storing items in an

unsorted sequence
– insertItem takes O(1) time since we can insert the new item at the

beginning or at the end of the sequence
– findElement and removeElement take O(n) time since in the worst

case (the item is not found) we traverse the entire sequence to look
for an item with the given key

• Effective only for dictionaries of
– small size or
– when insertions are the most common operations, while searches

and removals are rarely performed (e.g., historical record of logins
to a workstation)

Hash Table -based
Dictionaries

Dictionaries and Hash Tables 5

Hash Functions and Hash Tables
• A hash table for a given key type consists of

– Array (called table) of size N
– Hash function h

• A hash function h maps keys of a given type to integers in a fixed
interval [0, N - 1]
– Ex: h(x) = x mod N is a hash function for integer keys
– The integer h(x) is called the hash value of key x

• When implementing a dictionary with a hash table, the goal is to store
item (k, o) at index i = h(k)

Dictionaries and Hash Tables 6

Example

• We design a hash table for a
dictionary storing items (social
security number, name)

• Our hash table uses an array of size
N = 10,000 and the hash function
h(x) = last four digits of x

Æ

Æ

Æ

Æ

0
1
2
3
4

9997
9998
9999

…

451-22-0004

981-10-0002

200-75-9998

025-61-0001

Dictionaries and Hash Tables 7

Hash Functions
• A hash function is usually specified as the composition of two

functions:

The hash code map is applied first, and the compression map is
applied next on the result

h(x) = h2(h1(x))

• The goal of the hash function is to “disperse” the keys in an
apparently random way

Hash code map
h1: keys ® integers

Compression map
h2: integers ® [0, N - 1]

Hash Code Maps: keys ® integers

Memory address
• reinterpret the memory address of the key object as an integer
• default hash code of Java objects
• disadvantage: two key objects with equal value have different hash

codes

Integer cast
• reinterpret bits of the key as an integer
• suitable for smaller keys (when number of bits in the key is at most

the number of bits in an integer)

Dictionaries & Hash Tables 8

Hash Code Maps: keys ® integers

Component sum
• suitable for larger keys
• partition bits of the key into components of fixed length and sum the

components
• disadvantage: many strings will have the same sum

h1(k) = a0 + a1 + a2 + … + an-1

Polynomial accumulation
• good for strings
• partition bits of the key into components of fixed length and

evaluate the polynomial
h1(k) = a0 + a1 z + a2 z2 + … + an-1zn-1

Dictionaries & Hash Tables 9

Compression Maps: integers ® [0,N-1]
• A good hash function guarantees the probability that two different

keys have the same hash is 1/N.
• The size N of the hash table is usually chosen to be a prime.

– The reason involves number theory and is beyond the scope of this course

Division
• h2 (y) = y mod N
• disadvantage: repeated keys of the form iN + j cause collisions

Multiply, Add and Divide (MAD)
• h2 (y) = ((ay + b) mod p) mod N
• This is a “good” hash function (continued next slide…)

Dictionaries & Hash Tables 10

Dictionaries and Hash Tables 11

Universal Hashing
• Recall that a good hash function guarantees the probability that

two different keys have the same hash is 1/N.

• A family of hash functions is universal if for any 0 ≤ j,k ≤ M-1,
Pr(h(j)=h(k)) ≤ 1/N

Theorem: The set of all functions, h, as defined below, is universal.
• Choose p as a prime between M and 2M
• Randomly select 0 < a < p and 0 ≤ b < p
• a and b are nonnegative integers such that a mod N ¹ 0

(otherwise, every integer would map to the same value b)
• Define h(k)=((ak+b) mod p) mod N

Dictionaries and Hash Tables 12

Collision Handling
Collisions occur when different elements are mapped to the same cell

Chaining
• each cell in the table points to a linked list of elements that map there
• simple, but requires additional memory outside the table

Open Addressing
• the colliding item is placed in a different cell of the table
• no additional memory, but complicates searching/removing
• common types: linear probing, quadratic probing, double hashing

Æ

Æ
Æ

0
1
2
3
4 451-22-0004 981-10-0004

025-61-0001

Dictionaries and Hash Tables 13

Open Addressing: Linear Probing
• Placing the colliding item in the next (circularly) available table cell

try A[(h(k) + i) mod N] for i = 0,1,2,…
• Colliding items cluster together, causing future collisions to cause a

longer sequence of probes (searches for next available cell)

• Example:
– h(x) = x mod 13
– Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

h(18) = 18 mod 13 = 5
41 mod 13 = 2
22 mod 13 = 9
44 mod 13 = 5
59 mod 13 = 7
32 mod 13 = 6
31 mod 13 = 5
73 mod 13 = 8

Dictionaries and Hash Tables 14

Search with Linear Probing
Consider a hash table A that uses linear
probing

findElement(k)
• Start at cell h(k)
• Check consecutive locations until one of

the following occurs
– An item with key k is found, or
– An empty cell is found, or
– N cells have been unsuccessfully

probed

Algorithm findElement(k)
i ¬ h(k)
p ¬ 0
repeat

c ¬ A[i]
if c = Æ

return NO_SUCH_KEY
else if c.key () = k

return c.element()
else

i ¬ (i + 1) mod N
p ¬ p + 1

until p = N
return NO_SUCH_KEY

Dictionaries and Hash Tables 15

Updates with Linear Probing
A special object, called AVAILABLE, replaces deleted elements

• removeElement(k)
– Search for an item with key k
– If it is found, replace it with item AVAILABLE and return element
– Else, return NO_SUCH_KEY

• insertItem(k, o)
– Throw an exception if the table is full
– Start at cell h(k)
– Search consecutive cells until a cell i is found that is either empty or

stores AVAILABLE
– Store item (k, o) in cell i

Dictionaries and Hash Tables 16

Open Addressing: Double Hashing
• Use a secondary hash function d(k) to place items in first available cell

try A[(h(k) + id(k)) mod N] for i = 0,1,2,…
• d(k) cannot have zero values

• The table size N must be a prime to allow probing of all the cells

Dictionaries and Hash Tables 17

Consider a hash table storing integer keys that handles collision with
double hashing

– N = 13
– h(k) = k mod 13
– d(k) = 1 + (k mod 7)

Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 44 22 73
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k) d (k) Probes
18 5 5 5
41 2 7 2
22 9 2 9
44 5 3 5 8
59 7 4 7
32 6 5 6
31 5 4 5 9 0
73 8 4 8 12

Dictionaries and Hash Tables 18

Performance of Hashing
• In the worst case, searches, insertions and removals on a hash table take

O(n) time
– occurs when all inserted keys collide

• The load factor a = n/N affects the performance of a hash table
– Assuming that the hash values are like random numbers, it can be

shown that the expected number of probes for an insertion with
open addressing is 1 / (1 - a)

– The expected number of probes for an insertion with chaining is
O(1 + a)

• The expected running time of all the dictionary ADT operations in a
hash table is O(1)

• In practice, hashing is very fast provided the load factor is not close to
100%

Chaining vs. Open Addressing
Chaining
• Less sensitive to hash functions and load

factor
• Supports a > 100%

Open Addressing
• Requires careful selection of hash

function to avoid clustering
• Degrades past a > 70%
• Can’t support a > 100%
• Better memory usage

Dictionaries & Hash Tables 19

Æ

Æ
Æ

0
1
2
3
4 b c

a

a
c

b

0
1
2
3
4

h(a) = 1 h(b) = 4 h(c) = 4

Other
• You are given an array A of integers. Determine the

integer that occurs most frequently in A.

Dictionaries & Hash Tables 20

