Dictionaries

Dictionary ADT

- Models a searchable collection of key-element items called entries
- Main operations: find, insert, remove
- findElement (k), insertItem (k, o), removeElement (k)
- size(), isEmpty()
- keys(), elements()
- Applications:
- address book
- word-definition pairs
- mapping host names to internet addresses (e.g., www.cs16.net to 128.148.34.101)

Log File

- A log file is a dictionary implemented by means of storing items in an unsorted sequence
- insertItem takes $\boldsymbol{O}(1)$ time since we can insert the new item at the beginning or at the end of the sequence
- findElement and removeElement take $\boldsymbol{O}(\boldsymbol{n})$ time since in the worst case (the item is not found) we traverse the entire sequence to look for an item with the given key
- Effective only for dictionaries of
- small size or
- when insertions are the most common operations, while searches and removals are rarely performed (e.g., historical record of logins to a workstation)

Hash Table -based Dictionaries

Hash Functions and Hash Tables

- A hash table for a given key type consists of
- Array (called table) of size N
- Hash function \boldsymbol{h}
- A hash function \boldsymbol{h} maps keys of a given type to integers in a fixed interval [0, N-1]
- Ex: $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{x} \bmod \boldsymbol{N}$ is a hash function for integer keys
- The integer $\boldsymbol{h}(\boldsymbol{x})$ is called the hash value of key \boldsymbol{x}
- When implementing a dictionary with a hash table, the goal is to store item $(\boldsymbol{k}, \boldsymbol{o})$ at index $\boldsymbol{i}=\boldsymbol{h}(\boldsymbol{k})$

Example

- We design a hash table for a dictionary storing items (social security number, name)

- Our hash table uses an array of size $N=10,000$ and the hash function

Hash Functions

- A hash function is usually specified as the composition of two functions:

Hash code map
 $\boldsymbol{h}_{1}:$ keys \rightarrow integers

Compression map
\boldsymbol{h}_{2} : integers $\rightarrow[0, \boldsymbol{N}-1]$

The hash code map is applied first, and the compression map is applied next on the result

$$
h(x)=h_{2}\left(h_{1}(x)\right)
$$

- The goal of the hash function is to "disperse" the keys in an apparently random way

Hash Code Maps: keys \rightarrow integers

Memory address

- reinterpret the memory address of the key object as an integer
- default hash code of Java objects
- disadvantage: two key objects with equal value have different hash codes

Integer cast

- reinterpret bits of the key as an integer
- suitable for smaller keys (when number of bits in the key is at most the number of bits in an integer)

Hash Code Maps: keys \rightarrow integers

Component sum

- suitable for larger keys
- partition bits of the key into components of fixed length and sum the components
- disadvantage: many strings will have the same sum

$$
\boldsymbol{h}_{\boldsymbol{l}}(\boldsymbol{k})=\boldsymbol{a}_{0}+\boldsymbol{a}_{1}+\boldsymbol{a}_{2}+\ldots+\boldsymbol{a}_{\boldsymbol{n}-1}
$$

Polynomial accumulation

- good for strings
- partition bits of the key into components of fixed length and evaluate the polynomial

$$
\boldsymbol{h}_{\boldsymbol{l}}(\boldsymbol{k})=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n-1} z^{n-1}
$$

Compression Maps: integers $\rightarrow[0, N-1]$

- A good hash function guarantees the probability that two different keys have the same hash is $1 / \mathrm{N}$.
- The size N of the hash table is usually chosen to be a prime.
- The reason involves number theory and is beyond the scope of this course

Division

- $\boldsymbol{h}_{2}(\boldsymbol{y})=\boldsymbol{y} \bmod \boldsymbol{N}$
- disadvantage: repeated keys of the form $i N+j$ cause collisions

Multiply, Add and Divide (MAD)

- $\boldsymbol{h}_{2}(\boldsymbol{y})=((\boldsymbol{a} \boldsymbol{y}+\boldsymbol{b}) \bmod \boldsymbol{p}) \bmod \boldsymbol{N}$
- This is a "good" hash function (continued next slide...)

Universal Hashing

- Recall that a good hash function guarantees the probability that two different keys have the same hash is $1 / \mathrm{N}$.
- A family of hash functions is universal if for any $0 \leq \boldsymbol{j}, \boldsymbol{k} \leq \boldsymbol{M}-1$,

$$
\operatorname{Pr}(\boldsymbol{h}(j)=\boldsymbol{h}(\boldsymbol{k})) \leq 1 / \boldsymbol{N}
$$

Theorem: The set of all functions, h, as defined below, is universal.

- Choose \boldsymbol{p} as a prime between \boldsymbol{M} and $2 \boldsymbol{M}$
- Randomly select $0<\boldsymbol{a}<\boldsymbol{p}$ and $0 \leq \boldsymbol{b}<\boldsymbol{p}$
- \boldsymbol{a} and \boldsymbol{b} are nonnegative integers such that $\boldsymbol{a} \bmod \boldsymbol{N} \neq 0$ (otherwise, every integer would map to the same value \boldsymbol{b})
- Define $\boldsymbol{h}(\boldsymbol{k})=((\boldsymbol{a} \boldsymbol{k}+\boldsymbol{b}) \bmod \boldsymbol{p}) \bmod \boldsymbol{N}$

Collision Handling

Collisions occur when different elements are mapped to the same cell

Chaining

- each cell in the table points to a linked list of elements that map there
- simple, but requires additional memory outside the table

Open Addressing

- the colliding item is placed in a different cell of the table
- no additional memory, but complicates searching/removing
- common types: linear probing, quadratic probing, double hashing

Open Addressing: Linear Probing

- Placing the colliding item in the next (circularly) available table cell $\operatorname{try} \mathrm{A}[(\boldsymbol{h}(\boldsymbol{k})+\boldsymbol{i}) \bmod \boldsymbol{N}]$ for $\boldsymbol{i}=0,1,2, \ldots$
- Colliding items cluster together, causing future collisions to cause a longer sequence of probes (searches for next available cell)
- Example:
$-\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{x} \bmod 13$
- Insert keys $18,41,22,44,59,32,31,73$, in this order

$h(18)=18 \bmod 13=5$
$41 \bmod 13=2$
$22 \bmod 13=9$
$44 \bmod 13=5$
$59 \bmod 13=7$
$32 \bmod 13=6$
$31 \bmod 13=5$
$73 \bmod 13=8$

Search with Linear Probing

Consider a hash table \boldsymbol{A} that uses linear probing
findElement (\boldsymbol{k})

- Start at cell $\boldsymbol{h}(\boldsymbol{k})$
- Check consecutive locations until one of the following occurs
- An item with key \boldsymbol{k} is found, or
- An empty cell is found, or
- \boldsymbol{N} cells have been unsuccessfully probed

```
Algorithm findElement(k)
    \(i \leftarrow h(k)\)
    \(p \leftarrow 0\)
    repeat
        \(c \leftarrow A[i]\)
        if \(c=\varnothing\)
        return NO_SUCH_KEY
            else if \(c \cdot k e y()=\boldsymbol{k}\)
        return c.element()
        else
        \(\boldsymbol{i} \leftarrow(\boldsymbol{i}+1) \bmod \boldsymbol{N}\)
        \(\boldsymbol{p} \leftarrow \boldsymbol{p}+1\)
    until \(p=N\)
    return NO_SUCH_KEY
```


Updates with Linear Probing

A special object, called $\boldsymbol{A V A I L A B L E}$, replaces deleted elements

- removeElement (\boldsymbol{k})
- Search for an item with key \boldsymbol{k}
- If it is found, replace it with item $\boldsymbol{A V A I L A B L E}$ and return element
- Else, return NO_SUCH_KEY
- insertItem $(\boldsymbol{k}, \boldsymbol{o})$
- Throw an exception if the table is full
- Start at cell $\boldsymbol{h}(\boldsymbol{k})$
- Search consecutive cells until a cell \boldsymbol{i} is found that is either empty or stores $\boldsymbol{A V A I L A B L E}$
- Store item $(\boldsymbol{k}, \boldsymbol{o})$ in cell \boldsymbol{i}

Open Addressing: Double Hashing

- Use a secondary hash function $\boldsymbol{d}(\boldsymbol{k})$ to place items in first available cell try $\mathrm{A}[(\boldsymbol{h}(\boldsymbol{k})+i d(\boldsymbol{k})) \bmod \boldsymbol{N}]$ for $i=0,1,2, \ldots$
- $\boldsymbol{d}(\boldsymbol{k})$ cannot have zero values
- The table size N must be a prime to allow probing of all the cells

Example of Double Hashing

Consider a hash table storing integer keys that handles collision with double hashing

$$
\begin{aligned}
& -\boldsymbol{N}=13 \\
& -\boldsymbol{h}(\boldsymbol{k})=\boldsymbol{k} \bmod 13 \\
& -\boldsymbol{d}(\boldsymbol{k})=1+(\boldsymbol{k} \bmod 7)
\end{aligned}
$$

Insert keys $18,41,22,44,59,32,31,73$, in this order

| \boldsymbol{k} | $\boldsymbol{h}(\boldsymbol{k})$ | $\boldsymbol{d}(\boldsymbol{k})$ | | Probes | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 5 | 5 | 5 | | |
| 41 | 2 | 7 | 2 | | |
| 22 | 9 | 2 | 9 | | |
| 44 | 5 | 3 | 5 | 8 | |
| 59 | 7 | 4 | 7 | | |
| 32 | 6 | 5 | 6 | | |
| 31 | 5 | 4 | 5 | 9 | 0 |
| 73 | 8 | 4 | 8 | 12 | |

Performance of Hashing

- In the worst case, searches, insertions and removals on a hash table take $O(n)$ time
- occurs when all inserted keys collide
- The load factor $\boldsymbol{\alpha}=\boldsymbol{n} / \boldsymbol{N}$ affects the performance of a hash table
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is $1 /(1-\alpha)$
- The expected number of probes for an insertion with chaining is $\mathrm{O}(1+\boldsymbol{\alpha})$
- The expected running time of all the dictionary ADT operations in a hash table is $\boldsymbol{O}(1)$
- In practice, hashing is very fast provided the load factor is not close to 100%

Chaining vs. Open Addressing

Chaining

- Less sensitive to hash functions and load factor
- Supports $\alpha>100 \%$

Open Addressing

- Requires careful selection of hash function to avoid clustering
- Degrades past $\alpha>70 \%$
- Can't support $\alpha>100 \%$
- Better memory usage

$$
h(\mathrm{a})=1 \quad h(\mathrm{~b})=4 \quad h(\mathrm{c})=4
$$

1	a
2	c
3	
4	b

Other

- You are given an array A of integers. Determine the integer that occurs most frequently in A.

