Sets

Set ADT

- A collection of unordered distinct objects
- there is no inherent ordering of elements in a set, but keeping the elements sorted can lead to more efficient set operations
- Main operations
- union (B) : executes $A \leftarrow A \cup B$
- intersect (B) : executes $A \leftarrow A \cap B$
$-\operatorname{subtract}(B)$: executes $A \leftarrow A-B$
- implemented using a generic version of the merge algorithm
- Running time of an operation should be at most $O\left(n_{A}+n_{B}\right)$

Storing a Set in a List

- We can implement a set with a list
- Elements are sorted according to some canonical ordering
- Space used is $O(n)$

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 2 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{array}
$$

Generic Merging

- Generalized merge of two sorted lists A and B
- Auxiliary methods aIsLess, bIsLess, bothAreEqual decide whether to add the element to list S based on what main operation is performed

```
Algorithm genericMerge(A,B)
    S}\leftarrow\mathrm{ empty sequence
    while }\neg\mathrm{ A.isEmpty() ^ ᄀB.isEmpty()
        a}\leftarrow\mathrm{ A.first().element(); b & B.first().element()
        if }a<
            aIsLess(a,S); A.remove(A.first())
        else if b<a
            bIsLess(b,S); B.remove(B.first())
        else {b=a}
            bothAreEqual(a, b, S)
            A.remove(A.first()); B.remove(B.first())
    while }\neg\mathrm{ A.isEmpty()
        aIsLess(a,S); A.remove(A.first())
    while }\neg\mathrm{ B.isEmpty()
        bIsLess(b,S);B.remove(B.first())
    return S
```


Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{array}{l|l|l|l|l|l}
A & 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \quad B \quad \begin{array}{|l|l|l|l|}
\hline 2 & 7 & 8 & 10 \\
\hline
\end{array}
$$

$$
S=A \cup B
$$

Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{array}{l|l|l|l|l|l}
A & 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \quad B \quad \begin{array}{|l|l|l|l|}
\hline 2 & 7 & 8 & 10 \\
\hline
\end{array}
$$

$$
S=A \cup B \quad 2
$$

Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{array}{l|l|l|l|l|l}
A & 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \quad B \quad \begin{array}{|l|l|l|l|}
\hline 2 & 7 & 8 & 10 \\
\hline
\end{array}
$$

$$
\begin{array}{ll|l|}
S=A \cup B & 2 & 5 \\
\hline
\end{array}
$$

Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{array}{l|l|l|l|l|l}
A & 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \quad B \quad \begin{array}{|l|l|l|l|}
\hline 2 & 7 & 8 & 10 \\
\hline
\end{array}
$$

$$
\begin{array}{ll|l|l|}
S=A \cup B & 2 & 5 & 6 \\
\hline
\end{array}
$$

Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{array}{l|l|l|l|l|l}
A & 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \quad B \quad \begin{array}{|l|l|l|l|}
\hline 2 & 7 & 8 & 10 \\
\hline
\end{array}
$$

$$
\begin{array}{ll|l|l|l|}
S=A \cup B
\end{array} \quad \begin{array}{|l|l|l|l}
2 & 5 & 6 & 7 \\
\hline
\end{array}
$$

Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{array}{l|l|l|l|l|l}
A & 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \quad B \quad \begin{array}{|l|l|l|l|}
\hline 2 & 7 & 8 & 10 \\
\hline
\end{array}
$$

$$
\begin{array}{ll|l|l|l|l|}
S=A \cup B
\end{array} \quad \begin{array}{ll}
2 & 5 \\
\hline
\end{array}
$$

Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{array}{l|l|l|l|l|l}
A & 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \quad B \quad \begin{array}{|l|l|l|l|}
\hline 2 & 7 & 8 & 10 \\
\hline
\end{array}
$$

$$
\begin{array}{ll|l|l|l|l|l|}
S=A \cup B
\end{array} \quad \begin{array}{ll}
2 & 5 \\
6 & 7 \\
\hline
\end{array}
$$

Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{array}{l|l|l|l|l|l}
A & 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \quad B \quad \begin{array}{|l|l|l|l|}
\hline 2 & 7 & 8 & 10 \\
\hline
\end{array}
$$

$$
\begin{array}{ll|l|l|l|l|l|l|}
S=A \cup B
\end{array} \quad \begin{array}{ll}
2 & 5 \\
\hline
\end{array}
$$

Using Generic Merge for Set Operations

- Any of the set operations can be implemented using a generic merge
- For example:
- intersection: only copy elements that are duplicated in both lists
- subtraction: only copy elements from A that are not equal to those in B
- All methods run in linear time.

